【算法思想·二叉树】思路篇

2024-09-04 01:28
文章标签 算法 二叉树 思想 思路

本文主要是介绍【算法思想·二叉树】思路篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文参考labuladong算法笔记[东哥带你刷二叉树(思路篇) | labuladong 的算法笔记]

本文承接 【算法思想·二叉树】纲领篇,先复述一下前文总结的二叉树解题总纲:

二叉树解题的思维模式分两类:

1、是否可以通过遍历一遍二叉树得到答案如果可以,用一个 traverse 函数配合外部变量来实现,这叫「遍历」的思维模式。

2、是否可以定义一个递归函数,通过子问题(子树)的答案推导出原问题的答案如果可以,写出这个递归函数的定义,并充分利用这个函数的返回值,这叫「分解问题」的思维模式。

无论使用哪种思维模式,你都需要思考:

如果单独抽出一个二叉树节点,它需要做什么事情?需要在什么时候(前/中/后序位置)做?其他的节点不用你操心,递归函数会帮你在所有节点上执行相同的操作。

1、翻转二叉树

输入一个二叉树根节点 root,让你把整棵树镜像翻转,比如输入的二叉树如下:

     4
   /   \
  2     7
 / \   / \
1   3 6   9

算法原地翻转二叉树,使得以 root 为根的树变成:

     4
   /   \
  7     2
 / \   / \
9   6 3   1

【思路】

不难发现,只要把二叉树上的每一个节点的左右子节点进行交换,最后的结果就是完全翻转之后的二叉树。

那么现在开始在心中默念二叉树解题总纲:

1、这题能不能用「遍历」的思维模式解决

可以,我写一个 traverse 函数遍历每个节点,让每个节点的左右子节点颠倒过来就行了。

单独抽出一个节点,需要让它做什么?让它把自己的左右子节点交换一下。

需要在什么时候做?好像前中后序位置都可以。

综上,可以写出如下[遍历]解法代码:

class Solution:# 主函数def invertTree(self, root):# 遍历二叉树,交换每个节点的子节点self.traverse(root)return root# 二叉树遍历函数def traverse(self, root):if not root:return # *** 前序位置 ***# 每一个节点需要做的事就是交换它的左右子节点tmp = root.leftroot.left = root.rightroot.right = tmp# 遍历框架,去遍历左右子树的节点self.traverse(root.left)self.traverse(root.right)

你把前序位置的代码移到后序位置也可以,但是直接移到中序位置是不行的,需要稍作修改,这应该很容易看出来吧,我就不说了。

按理说,这道题已经解决了,不过为了对比,我们再继续思考下去。

2、这题能不能用「分解问题」的思维模式解决

我们尝试给 invertTree 函数赋予一个定义:

# 定义:将以 root 为根的这棵二叉树翻转,返回翻转后的二叉树的根节点
def invertTree(root: TreeNode)

然后思考,对于某一个二叉树节点 x 执行 invertTree(x),你能利用这个递归函数的定义做点啥?

我可以用 invertTree(x.left) 先把 x 的左子树翻转,再用 invertTree(x.right) 把 x 的右子树翻转,最后把 x 的左右子树交换,这恰好完成了以 x 为根的整棵二叉树的翻转,即完成了 invertTree(x) 的定义。

直接写出[分解]思路代码:

class Solution:# 定义:将以 root 为根的这棵二叉树翻转,返回翻转后的二叉树的根节点def invertTree(self, root):if root is None:return None# 利用函数定义,先翻转左右子树left = self.invertTree(root.left)right = self.invertTree(root.right)# 然后交换左右子节点root.left, root.right = right, left# 和定义逻辑自恰:以 root 为根的这棵二叉树已经被翻转,返回 rootreturn root

这种「分解问题」的思路,核心在于你要给递归函数一个合适的定义,然后用函数的定义来解释你的代码;如果你的逻辑成功自恰,那么说明你这个算法是正确的。

好了,这道题就分析到这,「遍历」和「分解问题」的思路都可以解决,看下一道题。

2、填充节点的右侧指针

116. 填充每个节点的下一个右侧节点指针 | 力扣  | LeetCode  |

给定一个 完美二叉树 ,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:

struct Node {int val;Node *left;Node *right;Node *next;
}

填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL

初始状态下,所有 next 指针都被设置为 NULL

示例 1:

输入:root = [1,2,3,4,5,6,7]
输出:[1,#,2,3,#,4,5,6,7,#]
解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。序列化的输出按层序遍历排列,同一层节点由 next 指针连接,'#' 标志着每一层的结束。

示例 2:

输入:root = []
输出:[]

提示:

  • 树中节点的数量在 [0, 212 - 1] 范围内
  • -1000 <= node.val <= 1000

进阶:

  • 你只能使用常量级额外空间。
  • 使用递归解题也符合要求,本题中递归程序占用的栈空间不算做额外的空间复杂度。

【思路】

题目的意思就是把二叉树的每一层节点都用 next 指针连接起来:

image

而且题目说了,输入是一棵「完美二叉树」,形象地说整棵二叉树是一个正三角形,除了最右侧的节点 next 指针会指向 null,其他节点的右侧一定有相邻的节点。

这道题怎么做呢?来默念二叉树解题总纲:

1、这题能不能用「遍历」的思维模式解决

很显然,一定可以。

每个节点要做的事也很简单,把自己的 next 指针指向右侧节点就行了。

也许你会模仿上一道题,直接写出如下代码:

# 二叉树遍历函数
def traverse(root):if root is None or root.left is None:return# 把左子节点的 next 指针指向右子节点root.left.next = root.righttraverse(root.left)traverse(root.right)

但是,这段代码其实有很大问题,因为它只能把相同父节点的两个节点穿起来,再看看这张图:

image

节点 5 和节点 6 不属于同一个父节点,那么按照这段代码的逻辑,它俩就没办法被穿起来,这是不符合题意的,但是问题出在哪里?

传统的 traverse 函数是遍历二叉树的所有节点,但现在我们想遍历的其实是两个相邻节点之间的「空隙」

所以我们可以在二叉树的基础上进行抽象,你把图中的每一个方框看做一个节点:

这样,一棵二叉树被抽象成了一棵三叉树,三叉树上的每个节点就是原先二叉树的两个相邻节点

现在,我们只要实现一个 traverse 函数来遍历这棵三叉树,每个「三叉树节点」需要做的事就是把自己内部的两个二叉树节点穿起来:

class Solution:# 主函数def connect(self, root: 'Node') -> 'Node':if not root:return None# 遍历「三叉树」,连接相邻节点self.traverse(root.left, root.right)return root# 三叉树遍历框架def traverse(self, node1: 'Node', node2: 'Node') -> None:if not node1 or not node2:return# 前序位置 # 将传入的两个节点穿起来node1.next = node2 # 连接相同父节点的两个子节点self.traverse(node1.left, node1.right)self.traverse(node2.left, node2.right)# 连接跨越父节点的两个子节点self.traverse(node1.right, node2.left)

这样,traverse 函数遍历整棵「三叉树」,将所有相邻节的二叉树节点都连接起来,也就避免了我们之前出现的问题,把这道题完美解决。

2、这题能不能用「分解问题」的思维模式解决

嗯,好像没有什么特别好的思路,所以这道题无法使用「分解问题」的思维来解决

3、将二叉树展开为链表

114. 二叉树展开为链表 | 力扣  | LeetCode  |

给你二叉树的根结点 root ,请你将它展开为一个单链表:

  • 展开后的单链表应该同样使用 TreeNode ,其中 right 子指针指向链表中下一个结点,而左子指针始终为 null 。
  • 展开后的单链表应该与二叉树 先序遍历 顺序相同。

示例 1:

输入:root = [1,2,5,3,4,null,6]
输出:[1,null,2,null,3,null,4,null,5,null,6]

示例 2:

输入:root = []
输出:[]

示例 3:

输入:root = [0]
输出:[0]

提示:

  • 树中结点数在范围 [0, 2000] 内
  • -100 <= Node.val <= 100

进阶:你可以使用原地算法(O(1) 额外空间)展开这棵树吗?

【思路】

# 函数签名如下
def flatten(root: TreeNode)

1、这题能不能用「遍历」的思维模式解决

乍一看感觉是可以的:对整棵树进行前序遍历,一边遍历一边构造出一条「链表」就行了:

# 虚拟头节点,dummy.right 就是结果
dummy = TreeNode(-1)
# 用来构建链表的指针
p = dummydef traverse(root: TreeNode):if root is None:return# 前序位置p.right = TreeNode(root.val)p = p.righttraverse(root.left)traverse(root.right)

但是注意 flatten 函数的签名,返回类型为 void,也就是说题目希望我们在原地把二叉树拉平成链表。

这样一来,没办法通过简单的二叉树遍历来解决这道题了

2、这题能不能用「分解问题」的思维模式解决

我们尝试给出 flatten 函数的定义:

# 定义:输入节点 root,然后 root 为根的二叉树就会被拉平为一条链表
def flatten(self, root: TreeNode) -> None:

有了这个函数定义,如何按题目要求把一棵树拉平成一条链表?

对于一个节点 x,可以执行以下流程:

1、先利用 flatten(x.left) 和 flatten(x.right) 将 x 的左右子树拉平。

2、将 x 的右子树接到左子树下方,然后将整个左子树作为右子树。

这样,以 x 为根的整棵二叉树就被拉平了,恰好完成了 flatten(x) 的定义。

直接看[分解]思路代码实现:

class Solution:# 定义:将以 root 为根的树拉平为链表def flatten(self, root) -> None:# base caseif root is None:return# 利用定义,把左右子树拉平self.flatten(root.left)self.flatten(root.right)# 后序遍历位置# 1、左右子树已经被拉平成一条链表left = root.leftright = root.right# 2、将左子树作为右子树root.left = Noneroot.right = left# 3、将原先的右子树接到当前右子树的末端p = rootwhile p.right is not None:p = p.rightp.right = right 

你看,这就是递归的魅力,你说 flatten 函数是怎么把左右子树拉平的?

不容易说清楚,但是只要知道 flatten 的定义如此并利用这个定义,让每一个节点做它该做的事情,然后 flatten 函数就会按照定义工作。

至此,这道题也解决了,我们前文 k个一组翻转链表 的递归思路和本题也有一些类似。

最后,首尾呼应,再次默写二叉树解题总纲。

二叉树解题的思维模式分两类:

1、是否可以通过遍历一遍二叉树得到答案?如果可以,用一个 traverse 函数配合外部变量来实现,这叫「遍历」的思维模式。

2、是否可以定义一个递归函数,通过子问题(子树)的答案推导出原问题的答案?如果可以,写出这个递归函数的定义,并充分利用这个函数的返回值,这叫「分解问题」的思维模式。

无论使用哪种思维模式,你都需要思考:

如果单独抽出一个二叉树节点,它需要做什么事情?需要在什么时候(前/中/后序位置)做?其他的节点不用你操心,递归函数会帮你在所有节点上执行相同的操作。

希望你能仔细体会,并运用到所有二叉树题目上。

这篇关于【算法思想·二叉树】思路篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134605

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int