嵌入式开发高频面试题——第四章 常见算法(上)

2024-09-04 00:20

本文主要是介绍嵌入式开发高频面试题——第四章 常见算法(上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

      • 4.1 排序算法
        • 4.1.1 **各种排序算法的时间空间复杂度、稳定性** ⭐⭐⭐⭐⭐
        • 4.1.2 **各种排序算法什么时候有最好情况、最坏情况(尤其是快排)** ⭐⭐⭐⭐
      • 4.1.3 **冒泡排序** ⭐⭐⭐⭐
      • 4.1.4 **选择排序** ⭐⭐⭐⭐
      • 4.1.5 **插入排序** ⭐⭐⭐⭐
      • 4.1.6 **希尔排序** ⭐⭐⭐⭐
      • 4.1.7 **归并排序** ⭐⭐⭐⭐
      • 4.1.8 **快速排序** ⭐⭐⭐⭐⭐
      • 4.1.9 **快排的 partition 函数与归并的 Merge 函数** ⭐⭐⭐

4.1 排序算法

4.1.1 各种排序算法的时间空间复杂度、稳定性 ⭐⭐⭐⭐⭐
排序算法平均时间复杂度最好情况时间复杂度最坏情况时间复杂度空间复杂度稳定性
冒泡排序O(n^2)O(n)O(n^2)O(1)稳定
选择排序O(n^2)O(n^2)O(n^2)O(1)不稳定
插入排序O(n^2)O(n)O(n^2)O(1)稳定
希尔排序O(n log n)O(n log^2 n)O(n^2)O(1)不稳定
归并排序O(n log n)O(n log n)O(n log n)O(n)稳定
快速排序O(n log n)O(n log n)O(n^2)O(log n)不稳定
  • 稳定性:指的是如果两个元素相等,它们在排序前后的相对位置是否保持不变。
  • 时间复杂度:算法执行所需的时间,通常表示为最坏、平均和最好情况。
  • 空间复杂度:算法执行时所需的额外存储空间。
4.1.2 各种排序算法什么时候有最好情况、最坏情况(尤其是快排) ⭐⭐⭐⭐
  • 冒泡排序

    • 最好情况:数组已经有序,时间复杂度为 O(n)。
    • 最坏情况:数组逆序,时间复杂度为 O(n^2)。
  • 选择排序

    • 无论数组是否有序,最好和最坏情况的时间复杂度都是 O(n^2)。
  • 插入排序

    • 最好情况:数组已经有序,时间复杂度为 O(n)。
    • 最坏情况:数组逆序,时间复杂度为 O(n^2)。
  • 希尔排序

    • 最好情况:数组基本有序,时间复杂度接近 O(n log n)。
    • 最坏情况:数组完全无序,时间复杂度为 O(n^2)。
  • 归并排序

    • 最好和最坏情况的时间复杂度都是 O(n log n),因为归并排序是分治算法,分割和合并的过程都不会依赖于数据的顺序。
  • 快速排序

    • 最好情况:每次分割点恰好是数组的中位数,时间复杂度为 O(n log n)。
    • 最坏情况:每次分割点总是选择最大或最小值,时间复杂度为 O(n^2)(通常在数组几乎有序或完全无序时发生)。改进方式是使用随机化或三数取中。

4.1.3 冒泡排序 ⭐⭐⭐⭐

void bubbleSort(int arr[], int n) {for (int i = 0; i < n - 1; i++) {bool swapped = false;for (int j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {std::swap(arr[j], arr[j + 1]);swapped = true;}}if (!swapped)break;}
}

4.1.4 选择排序 ⭐⭐⭐⭐

void selectionSort(int arr[], int n) {for (int i = 0; i < n - 1; i++) {int minIndex = i;for (int j = i + 1; j < n; j++) {if (arr[j] < arr[minIndex])minIndex = j;}std::swap(arr[i], arr[minIndex]);}
}

4.1.5 插入排序 ⭐⭐⭐⭐

void insertionSort(int arr[], int n) {for (int i = 1; i < n; i++) {int key = arr[i];int j = i - 1;while (j >= 0 && arr[j] > key) {arr[j + 1] = arr[j];j--;}arr[j + 1] = key;}
}

4.1.6 希尔排序 ⭐⭐⭐⭐

void shellSort(int arr[], int n) {for (int gap = n / 2; gap > 0; gap /= 2) {for (int i = gap; i < n; i++) {int temp = arr[i];int j;for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) {arr[j] = arr[j - gap];}arr[j] = temp;}}
}

4.1.7 归并排序 ⭐⭐⭐⭐

void merge(int arr[], int left, int mid, int right) {int n1 = mid - left + 1;int n2 = right - mid;int L[n1], R[n2];for (int i = 0; i < n1; i++)L[i] = arr[left + i];for (int i = 0; i < n2; i++)R[i] = arr[mid + 1 + i];int i = 0, j = 0, k = left;while (i < n1 && j < n2) {if (L[i] <= R[j])arr[k++] = L[i++];elsearr[k++] = R[j++];}while (i < n1)arr[k++] = L[i++];while (j < n2)arr[k++] = R[j++];
}void mergeSort(int arr[], int left, int right) {if (left < right) {int mid = left + (right - left) / 2;mergeSort(arr, left, mid);mergeSort(arr, mid + 1, right);merge(arr, left, mid, right);}
}

4.1.8 快速排序 ⭐⭐⭐⭐⭐

int partition(int arr[], int low, int high) {int pivot = arr[high];int i = (low - 1);for (int j = low; j <= high - 1; j++) {if (arr[j] < pivot) {i++;std::swap(arr[i], arr[j]);}}std::swap(arr[i + 1], arr[high]);return (i + 1);
}void quickSort(int arr[], int low, int high) {if (low < high) {int pi = partition(arr, low, high);quickSort(arr, low, pi - 1);quickSort(arr, pi + 1, high);}
}

4.1.9 快排的 partition 函数与归并的 Merge 函数 ⭐⭐⭐

  • Partition 函数(用于快速排序):

    • 用来确定一个枢轴(pivot),将数组划分为两部分,使得枢轴左边的元素小于枢轴,右边的元素大于枢轴。
    • 快排基于分治思想,利用递归将划分后的部分继续排序。
  • Merge 函数(用于归并排序):

    • 用来合并两个已经排序的数组,形成一个有序数组。
    • 归并排序的分治过程首先对数组分割,然后通过Merge函数逐步将有序的子数组合并成最终的有序数组。

这篇关于嵌入式开发高频面试题——第四章 常见算法(上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134462

相关文章

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

SQLite3 在嵌入式C环境中存储音频/视频文件的最优方案

《SQLite3在嵌入式C环境中存储音频/视频文件的最优方案》本文探讨了SQLite3在嵌入式C环境中存储音视频文件的优化方案,推荐采用文件路径存储结合元数据管理,兼顾效率与资源限制,小文件可使用B... 目录SQLite3 在嵌入式C环境中存储音频/视频文件的专业方案一、存储策略选择1. 直接存储 vs

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

Mysql常见的SQL语句格式及实用技巧

《Mysql常见的SQL语句格式及实用技巧》本文系统梳理MySQL常见SQL语句格式,涵盖数据库与表的创建、删除、修改、查询操作,以及记录增删改查和多表关联等高级查询,同时提供索引优化、事务处理、临时... 目录一、常用语法汇总二、示例1.数据库操作2.表操作3.记录操作 4.高级查询三、实用技巧一、常用语

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加