Spark实战(四)spark+python快速入门实战小例子(PySpark)

2024-09-03 23:18

本文主要是介绍Spark实战(四)spark+python快速入门实战小例子(PySpark),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

   由于目前很多spark程序资料都是用scala语言写的,但是现在需要用python来实现,于是在网上找了scala写的例子改为python实现

1、集群测试实例

   代码如下:
from pyspark.sql import SparkSession

if __name__ == "__main__":spark = SparkSession\.builder\.appName("PythonWordCount")\.master("spark://mini1:7077") \.getOrCreate()spark.conf.set("spark.executor.memory", "500M")sc = spark.sparkContexta = sc.parallelize([1, 2, 3])b = a.flatMap(lambda x: (x,x ** 2))print(a.collect())print(b.collect())

   运行结果:
在这里插入图片描述

2、从文件中读取

   为了方便调试,这里采用本地模式进行测试

from py4j.compat import long
from pyspark.sql import SparkSession
def formatData(arr):# arr = arr.split(",")mb = (arr[0], arr[2])flag = arr[3]time = long(arr[1])# time = arr[1]if flag == "1":time = -timereturn (mb,time)if __name__ == "__main__":spark = SparkSession\.builder\.appName("PythonWordCount")\.master("local")\.getOrCreate()sc = spark.sparkContext# sc = spark.sparkContextline = sc.textFile("D:\\code\\hadoop\\data\\spark\\day1\\bs_log").map(lambda x: x.split(','))count = line.map(lambda x: formatData(x))rdd0 = count.reduceByKey(lambda agg, obj: agg + obj)# print(count.collect())line2 = sc.textFile("D:\\code\\hadoop\\data\\spark\\day1\\lac_info.txt").map(lambda x: x.split(','))rdd = count.map(lambda arr: (arr[0][1], (arr[0][0], arr[1])))rdd1 = line2.map(lambda arr: (arr[0], (arr[1], arr[2])))rdd3 = rdd.join(rdd1)rdd4 =rdd0.map(lambda arr: (arr[0][0], arr[0][1], arr[1]))# .map(lambda arr: list(arr).sortBy(lambda arr1: arr1[2]).reverse)rdd5 = rdd4.groupBy(lambda arr: arr[0]).values().map(lambda das: sorted(list(das), key=lambda x: x[2], reverse=True))print(rdd5.collect())

   原文件数据:
在这里插入图片描述

在这里插入图片描述

   结果如下:

[[('18688888888', '16030401EAFB68F1E3CDF819735E1C66', 87600), ('18688888888', '9F36407EAD0629FC166F14DDE7970F68', 51200), ('18688888888', 'CC0710CC94ECC657A8561DE549D940E0', 1300)], [('18611132889', '16030401EAFB68F1E3CDF819735E1C66', 97500), ('18611132889', '9F36407EAD0629FC166F14DDE7970F68', 54000), ('18611132889', 'CC0710CC94ECC657A8561DE549D940E0', 1900)]]

3、读取文件并将结果保存至文件

from pyspark.sql import SparkSession
from py4j.compat import longdef formatData(arr):# arr = arr.split(",")mb = (arr[0], arr[2])flag = arr[3]time = long(arr[1])# time = arr[1]if flag == "1":time = -timereturn (mb,time)if __name__ == "__main__":spark = SparkSession\.builder\.appName("PythonWordCount")\.master("local")\.getOrCreate()sc = spark.sparkContextline = sc.textFile("D:\\code\\hadoop\\data\\spark\\day1\\bs_log").map(lambda x: x.split(','))rdd0 = line.map(lambda x: formatData(x))rdd1 = rdd0.reduceByKey(lambda agg, obj: agg + obj).map(lambda t: (t[0][1], (t[0][0], t[1])))line2 = sc.textFile("D:\\code\\hadoop\\data\\spark\\day1\\lac_info.txt").map(lambda x: x.split(','))rdd2 = line2.map(lambda x: (x[0], (x[1], x[2])))rdd3 = rdd1.join(rdd2).map(lambda x: (x[1][0][0], x[0], x[1][0][1], x[1][1][0], x[1][1][1]))rdd4 = rdd3.groupBy(lambda x: x[0])rdd5 = rdd4.mapValues(lambda das: sorted(list(das), key=lambda x: x[2], reverse=True)[:2])print(rdd1.join(rdd2).collect())print(rdd5.collect())rdd5.saveAsTextFile("D:\\code\\hadoop\\data\\spark\\day02\\out1")sc.stop()
   结果如下:

在这里插入图片描述

4、根据自定义规则匹配

import urllib
from pyspark.sql import SparkSession
def getUrls(urls):url = urls[0]parsed = urllib.parse.urlparse(url)return (parsed.netloc, url, urls[1])if __name__ == "__main__":spark = SparkSession \.builder \.appName("PythonWordCount") \.master("local") \.getOrCreate()sc = spark.sparkContextline = sc.textFile("D:\\code\\hadoop\\data\\spark\\day02\\itcast.log").map(lambda x: x.split('\t'))//从数据库中加载规则arr = ["java.itcast.cn", "php.itcast.cn", "net.itcast.cn"]rdd1 = line.map(lambda x: (x[1], 1))rdd2 = rdd1.reduceByKey(lambda agg, obj: agg + obj)rdd3 = rdd2.map(lambda x: getUrls(x))for ins in arr:rdd = rdd3.filter(lambda x:x[0] == ins)result = rdd.sortBy(lambda x: x[2], ascending = False).take(2)print(result)spark.stop()

   结果如下:
在这里插入图片描述

5、自定义类排序

from operator import gt
from pyspark.sql import SparkSessionclass Girl:def __init__(self, faceValue, age):self.faceValue = faceValueself.age = agedef __gt__(self, other):if other.faceValue == self.faceValue:return gt(self.age, other.age)else:return gt(self.faceValue, other.faceValue)if __name__ == "__main__":spark = SparkSession\.builder\.appName("PythonWordCount")\.master("local")\.getOrCreate()sc = spark.sparkContextrdd1 = sc.parallelize([("yuihatano", 90, 28, 1), ("angelababy", 90, 27, 2), ("JuJingYi", 95, 22, 3)])rdd2 = rdd1.sortBy(lambda das: Girl(das[1], das[2]),False)print(rdd2.collect())sc.stop()

   结果如下:

在这里插入图片描述

6、JDBC

from pyspark import SQLContext
from pyspark.sql import SparkSessionif __name__ == "__main__":spark = SparkSession\.builder\.appName("PythonWordCount")\.master("local")\.getOrCreate()sc = spark.sparkContextsqlContext = SQLContext(sc)df = sqlContext.read.format("jdbc").options(url="jdbc:mysql://localhost:3306/hellospark",driver="com.mysql.jdbc.Driver",dbtable="(select * from actor) tmp",user="root",password="123456").load()print(df.select('description','age').show(2))# print(df.printSchema)sc.stop()

   结果如下:
在这里插入图片描述

这篇关于Spark实战(四)spark+python快速入门实战小例子(PySpark)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134332

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学