Opencv中的直方图(5)计算EMD距离的函数EMD()的使用

2024-09-03 18:12

本文主要是介绍Opencv中的直方图(5)计算EMD距离的函数EMD()的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

计算两个加权点配置之间的“最小工作量”距离。

该函数计算地球搬运工距离(Earth Mover’s Distance)和/或两个加权点配置之间距离的下界。其中一个应用如文献 225和 226中所述,是在图像检索中进行多维直方图比较。EMD 是一个运输问题,使用某种修改的单纯形算法来求解,因此最坏情况下的复杂度是指数级的,不过平均而言它要快得多。在真实度量的情况下,下界甚至可以用线性时间算法更快地计算出来,并且它可以用来大致确定两个签名是否足够远,以至于它们不可能关联到同一个对象。

函数原型


float cv::EMD
(InputArray 	signature1,InputArray 	signature2,	int 	distType,InputArray 	cost = noArray(),float * 	lowerBound = 0,OutputArray 	flow = noArray() 
)		

参数

  • 参数signature1 第一个签名,一个大小为 size1 × dims + 1 的浮点矩阵。每一行存储点的权重后跟点的坐标。如果使用用户定义的成本矩阵,则允许该矩阵只有一列(仅权重)。权重必须是非负的,并且至少有一个非零值
  • 参数signature2 第二个签名,格式与 signature1 相同,尽管行数可能不同。总权重可以不同。在这种情况下,会在 signature1 或 signature2 中添加一个额外的“虚拟”点。权重必须是非负的,并且至少有一个非零值。
  • 参数distType 使用的度量。见 DistanceTypes
  • 参数cost 用户定义的大小为 size1 × size2 的成本矩阵。另外,如果使用成本矩阵,则无法计算下界 lowerBound,因为它需要一个度量函数。
  • 参数lowerBound 可选的输入/输出参数:两个签名之间的距离的下界,即质心之间的距离。如果使用用户定义的成本矩阵,点配置的总权重不相等,或者签名只包含权重(签名矩阵只有一列),则下界可能不会被计算。你必须初始化 lowerBound。如果计算得到的质心之间的距离大于或等于 lowerBound(这意味着签名之间的距离足够远),则函数不会计算 EMD。无论如何,返回时 lowerBound 都会被设置为计算得到的质心之间的距离。因此,如果你想同时计算质心之间的距离和 EMD,则应将 lowerBound 设置为 0。
  • 参数flow 结果大小为 size1 × size2 的流矩阵:flow[i,j] 是从 signature1 的第 i 个点到 signature2 的第 j 个点的流。

代码示例

#include <iostream>
#include <opencv2/opencv.hpp>int main()
{// 创建两个加权点配置cv::Mat signature1 = ( cv::Mat_< float >( 3, 2 ) << 100, 23, 12,13, 13, 11 );  // 权重和坐标cv::Mat signature2 = ( cv::Mat_< float >( 3, 2 ) << 3, 12, 12, 1, 21, 3 );  // 权重和坐标// 初始化参数int distType = cv::DIST_L2;  // 使用 L2 距离cv::Mat flow;                // 流矩阵float lowerBound = 0;        // 下界// 计算 EMDfloat distance = cv::EMD( signature1, signature2, distType, cv::Mat(), &lowerBound, flow );std::cout << "The EMD distance between the two signatures is: " << distance << std::endl;std::cout << "The lower bound of the EMD distance is: " << lowerBound << std::endl;std::cout << "The flow matrix is: " << std::endl << flow << std::endl;return 0;
}

运行结果

在这里插入图片描述

这篇关于Opencv中的直方图(5)计算EMD距离的函数EMD()的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133668

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2