HBase实战

2024-09-03 16:48
文章标签 实战 hbase

本文主要是介绍HBase实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[b][size=medium]第一章 HBase介绍[/size][/b]
HBase是一种数据库:Hadoop数据库。它经常被描述为一种稀疏的、分布式的、持久化的、多维有序的映射,它基于行键(row key)、列键(column key)和时间戳(timestamp)建立索引。
HBase基于BigTable
联机事务处理(OLTP)尽快的返回响应结果
联机分析处理(OLAP)
抓取增量数据:
1.抓取监控指标:OpenTSDB
2.抓取用户交互数据:Facebook和StumbleUpon
3.遥测技术 Mozilia和Trend Micro


[b][size=medium]第二章 入门[/size][/b]
HBase是一种专门为 半结构话数据(semistructured)和水平可扩展性(horizontal scalability)
设计的数据库。它表数据存储在表里。在表里,数据按照一个四维坐标系来组织:
行键、列簇、列限定符、时间版本
HBase是无模式数据库,只需要提前定义列簇。它也是无类型数据库,把所有数据不加解释滴按照字节数组存储。有5个基本命令来访问HBase中的数据:
Get、Put、Delete、Scan、Increment
基于非行键查询HBase的唯一办法是通过带过滤器的扫描
HBase不是一个ACID兼容数据库
HBase不是一个ACID兼容数据库。但是HBase提供一些保证,当你的应用系统访问HBase系统时,你可以用其来使你的应用系统的行为更加合理。这些保证具体如下:
1.操作是低级原子不可分的。换句话说,给定行上的Put()要门整理成功要么整体回到
操作开始前的状态,永远不会部分行写入而凌一航部分没有。这个要素和操作执行
的列簇的数量五官
2.行间操作不是原子性的。不能保证所有操作整体成功或者失败,所有单行操作如上一点
所述是原子性的
3.checkAnd* 和 increment* 操作是原子不可分的
4.对于给定的多个写操作,总是以每个写操作为整体彼此独立的。这是低一点的延伸。
5.对于给定行的任何Get()操作,返回系统当时所保存的完整行
6.全表扫描不是对某个时间点表的快照扫描。如果扫描已经开始,但是在运行R行被扫描
器对象读出之前,行R被改变了,那么扫描器独处行R更新后的版本,但是扫描器读出
的数据是一直的,得到行R更新后的完整行

数据模型从逻辑上可以分为键值存储或者有序映射的映射。物理数据模型是基于列簇的列式数据库,单个记录以键值形式存储。
Atomicity 原子性
Consistency 一致性
Isolation 隔离性
Durability 持久性
一个列簇对应一个MemStore,也对应一个BlockCache,对应多个HFile,HFile是基于列簇的
行键。列簇,列限定符,时间版本 用java对象表示为:
Map<RowKey,Map<ColumnFamily,Map<ColumnQualifier,Map<Version,Date>>>>
行键是HBase中唯一的全局索引坐标,因为查询经常通过行键扫描实现。复合行键是支持这种扫描的常见做法。
行键值经常希望是均衡分部的。诸如MD5或SHA1等散列算法通常用来实现这种均衡分部


[b][size=medium]第三章 分布式的HBase、HDFS和MapReduce[/size][/b]
Hadoop分布式文件系统作为HBase的存储层,支持可用性(availability)和可靠性(reliability)
联机事务处理(OLTP) 和 联机分析处理(OLAP)
在线系统看中的是得到一点数据所需要的时间
离线系统看中的是每秒处理单位数量

许多计算问题本来很适合并行化处理。只是因为一些偶然的原因,它们不得不用串行化方式处理。这

些原因可能是编程语言设计、存储引擎实现方式、函数库API等。挑战一下你的算法设计能力,看看

这样的情况有哪些。不是所有问题都容易并行处理

MapReduce概览
MapReduce的一些限制如下:
1.所有计算都分解为map或者reduce任务来实现
2.每个任务处理全部输入数据中的一部分
3.主要根据输入数据和输出数据定义任务
4.任务依赖于自己的输入数据,不需要与其他任务通讯

这篇关于HBase实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133490

相关文章

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

滚雪球学Java(87):Java事务处理:JDBC的ACID属性与实战技巧!真有两下子!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~ 🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!! 环境说明:Windows 10

springboot实战学习(1)(开发模式与环境)

目录 一、实战学习的引言 (1)前后端的大致学习模块 (2)后端 (3)前端 二、开发模式 一、实战学习的引言 (1)前后端的大致学习模块 (2)后端 Validation:做参数校验Mybatis:做数据库的操作Redis:做缓存Junit:单元测试项目部署:springboot项目部署相关的知识 (3)前端 Vite:Vue项目的脚手架Router:路由Pina:状态管理Eleme

深度学习实战:如何利用CNN实现人脸识别考勤系统

1. 何为CNN及其在人脸识别中的应用 卷积神经网络(CNN)是深度学习中的核心技术之一,擅长处理图像数据。CNN通过卷积层提取图像的局部特征,在人脸识别领域尤其适用。CNN的多个层次可以逐步提取面部的特征,最终实现精确的身份识别。对于考勤系统而言,CNN可以自动从摄像头捕捉的视频流中检测并识别出员工的面部。 我们在该项目中采用了 RetinaFace 模型,它基于CNN的结构实现高效、精准的

项目实战系列三: 家居购项目 第四部分

购物车 🌳购物车🍆显示购物车🍆更改商品数量🍆清空购物车&&删除商品 🌳生成订单 🌳购物车 需求分析 1.会员登陆后, 可以添加家居到购物车 2.完成购物车的设计和实现 3.每添加一个家居,购物车的数量+1, 并显示 程序框架图 1.新建src/com/zzw/furns/entity/CartItem.java, CartItem-家居项模型 /***

Birt报表开发实战

我就截图描述得了,没什么含金量,看图基本明白的。 1.开始 a.创建报表文件 b.数据源配置 c.配置数据集 2.网格报表 拖拉式操作,很方便 3.预览效果 其他报表的操作也基本不难,就不扯了! 2.级联参数 官方视频教程:http://demo.actuate.com/demos/cascade/cascade.html