Netty采集数据高效写入TDengine

2024-09-03 14:52

本文主要是介绍Netty采集数据高效写入TDengine,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在现代数据处理应用中,高效的数据采集与存储至关重要。Netty 是一个高性能的异步事件驱动的网络应用程序框架,非常适合用于构建高效的数据采集服务。本文将介绍如何使用 Netty 搭建一个数据采集服务,并通过优化的方式将数据高效地写入 TDengine 数据库。

设计思路

我们的目标是构建一个高效的数据采集服务,该服务能够接收来自多个客户端的数据,并在数据量达到一定阈值或经过一定时间后批量写入 TDengine 数据库。为了实现这一目标,我们需要解决以下几个关键问题:

  1. 数据缓冲:需要一个高效的缓存结构来暂存接收到的数据。

  2. 批量处理:当数据量达到一定阈值或经过一定时间后,应将数据批量写入数据库。

  3. 并发控制:确保在多线程环境下数据处理的安全性。

  4. 配置动态调整:允许配置参数如批量大小和最大等待时间的动态调整。

实现过程

1. 数据缓冲

为了高效地暂存数据,我们使用 ConcurrentLinkedQueue 作为数据缓冲区。这种队列是线程安全的,并且提供了高效的插入和删除操作。

private final ConcurrentLinkedQueue<String> buffer = new ConcurrentLinkedQueue<>();

2. 批量处理

当数据达到一定数量或经过一定时间后,我们将启动一个批量插入操作。为了实现这一点,我们使用了两个主要的组件:

  • 计数器:用于跟踪当前缓存中的数据数量。

  • 定时任务:如果数据没有达到阈值,则设置一个定时任务来处理数据。

private final AtomicInteger counter = new AtomicInteger(0);
private ScheduledFuture<?> scheduledFuture = null;

3. 并发控制

为了确保数据处理的安全性,我们使用 ReentrantLock 来保护批量插入操作。此外,我们还使用 AtomicBoolean 来标识当前是否有线程正在进行批量插入操作。

private final ReentrantLock lock = new ReentrantLock();
private final AtomicBoolean isBatchInserting = new AtomicBoolean(false);

4. 配置动态调整

我们使用 Nacos 配置中心来动态调整批量大小和最大等待时间。这样可以在不重启服务的情况下调整这些参数。

@NacosValue(value = "${batchSize:1000}", autoRefreshed = true)
private volatile int batchSize;  // 阈值
​
@NacosValue(value = "${maxWaitTime:500}", autoRefreshed = true)
private volatile long maxWaitTime;  // 最大延迟时间(毫秒)

5. 核心方法

channelRead 方法

每当从客户端接收到一条数据时,都会调用此方法。在此方法中,我们将数据添加到缓冲区,并更新计数器。如果数据达到阈值,则立即执行批量插入。

@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {String data = (String) msg;buffer.add(data);int currentCount = counter.incrementAndGet();
​if (currentCount == 1) {scheduleBatchInsert();}
​if (currentCount >= batchSize) {batchInsert();}
}
scheduleBatchInsert 方法

计数器为1的时候,我们会安排一个定时任务来预备处理数据,以保证即便数据条目没有达到设定的阈值,也会被及时批量写入数据库中。

private void scheduleBatchInsert() {scheduledFuture = scheduler.schedule(this::batchInsert, maxWaitTime, TimeUnit.MILLISECONDS);
}
batchInsert 方法

此方法负责实际的批量插入操作。首先,它会检查是否已经有线程正在进行批量插入。如果是,则直接返回。如果不是,则获取锁,并开始处理数据。

private void batchInsert() {if (isBatchInserting.compareAndSet(false, true)) {lock.lock();try {if (counter.get() == 0) {return;}
​List<String> dataToInsert = new ArrayList<>();while (!buffer.isEmpty()) {String data = buffer.poll();if (data != null) {dataToInsert.add(data);}}
​counter.set(0);
​if (scheduledFuture != null && !scheduledFuture.isDone()) {scheduledFuture.cancel(false);}
​if (!dataToInsert.isEmpty()) {try {insertIntoTDengine(dataToInsert);} catch (Exception e) {logger.error("Failed to insert data into TDengine", e);}}} finally {lock.unlock();isBatchInserting.set(false);  // 设置标志位为 false}}
}
insertIntoTDengine 方法

此方法实现了将数据写入 TDengine 的逻辑。具体实现取决于 TDengine 的 API 或者使用的 ORM 框架。

private void insertIntoTDengine(List<String> dataToInsert) {// 实现使用 MyBatisPlus 写入 TDengine 的逻辑,可以参照https://blog.csdn.net/qq_47741012/article/details/141181396
}

6. 生命周期管理

为了确保服务的健壮性,我们需要处理通道关闭和异常捕获事件。此外,还需要提供关闭服务的方法来释放资源。

// 客户端断开连接
@Override
public void channelInactive(ChannelHandlerContext ctx) {cancelScheduledTask();super.channelInactive(ctx);
}
​
Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) {logger.error("Exception caught in DataCollectionHandler", cause);ctx.close();
}
​
public void cancelScheduledTask() {if (scheduledFuture != null && !scheduledFuture.isCancelled()) {scheduledFuture.cancel(false);}
}

总结

通过上述设计和实现,我们构建了一个高效的数据采集服务,能够实时接收数据并在数据量达到阈值或经过一定时间后批量写入 TDengine 数据库。这种设计不仅提高了数据处理的效率,还确保了在高并发环境下的数据安全性和一致性。

这篇关于Netty采集数据高效写入TDengine的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133271

相关文章

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

Python利用自带模块实现屏幕像素高效操作

《Python利用自带模块实现屏幕像素高效操作》这篇文章主要为大家详细介绍了Python如何利用自带模块实现屏幕像素高效操作,文中的示例代码讲解详,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、获取屏幕放缩比例2、获取屏幕指定坐标处像素颜色3、一个简单的使用案例4、总结1、获取屏幕放缩比例from

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下