【正点原子K210连载】第三十四章 image图像滤波实验 摘自【正点原子】DNK210使用指南-CanMV版指南

本文主要是介绍【正点原子K210连载】第三十四章 image图像滤波实验 摘自【正点原子】DNK210使用指南-CanMV版指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第三十四章 image图像滤波实验

在上一章节中,介绍了image模块中元素绘制方法给的使用,本章将继续介绍image模块中图像滤波方法的使用。通过本章的学习,读者将学习到image模块中图像滤波的使用。
本章分为如下几个小节:
34.1 image模块图像滤波方法介绍
34.2 硬件设计
34.3 程序设计
34.4 运行验证

34.1 image模块图像滤波方法介绍
image模块为Image对象提供了histeq()方法,用于对图像进行直方图均衡处理,histeq()方法如下所示:
image.histeq(adaptive=False, clip_limit=-1)
histeq()方法用于对图像进行直方图均衡处理,直方图均衡处理能够使得图像中的对比度和亮度标准化。
adaptive指的是是否使用自适应直方图均衡算法,自适应直方图均衡算法通常比非自适应直方图均衡算法效果更好,但需要更长的运行时间,当为False时,使用非自适应直方图均衡算法,当为True时,使用自适应直方图均衡算法,默认为False。
clip_limit指的是自适应均衡对比度,默认为-1。
histeq()方法会返回经过处理的Image对象。
histeq()方法的使用示例如下所示:
import image

img = image.Image(size=(320, 240))
img.histeq(adaptive=True, clip_limit=3)
image模块为Image对象提供了gaussian()方法,用于对图像进行模糊滤波处理,gaussian()方法如下所示:
image.gaussian(size, unsharp=False, mul, add=0, threshold=False, offset=0, invert=False, mask)
gaussian()方法用于对图像进行模糊滤波处理,具体的实现方式是使用平滑高斯核对图像进行卷积。
size指的是卷积核的大小,可为1(33)、2(55)或更高值。
unsharp指的是执行非锐化掩膜操作,从而提高边缘的图像清晰度。
mul指的是用以与卷积结果相乘的数字,若不设置,则使用默认的自动值,该值将放置卷积输出中的缩放,可以进行全局对比度调整。
add指的是用来与每个像素卷积结果相加的数值,可以进行全局亮度调整。
threshold指的是是否开启图像的自适应阈值处理,开启后可以根据环境像素的亮度,将像素设置为1或者0。
offset指的是开启图像的自适应阈值处理后,如何将像素设置为1,若为负数,则会将更多的像素设置为1,若为正数,则仅将最强对比度的像素设置为1。
invert指的是是否反转二进制图像的输出结果。
mask指的是另一个用作绘图操作的像素级掩码的图像,掩码应该是一个只有黑色和白色像素的图像,并且因该与所处理的Image对象具有相同的大小,仅有掩码中设置的像素会被修改。
gaussian()方法会返回经过处理的Image对象。
gaussian()方法的使用示例如下所示:

import imageimg = image.Image(size=(320, 240))
img.gaussian(2)

image模块为Image对象提供了cartoon()方法,用于对图像进行卡通滤波处理,cartoon()方法如下所示:
image.cartoon(seed_threshold=0.05, floating_threshold=0.05, mask)
cartoon()方法用于对图像进行卡通滤波处理,对图像进行卡通滤波后,还会使用flood-fills算法填充图像中的所有像素区域,通过使图像的所有区域颜色变平来有效地从图像中去除纹理,为了获得最佳效果,图像应具有大量对比度,以使区域不会太容易相互渗透。
seed_threshold指的是填充区域中的像素与原始起始像素的差异。
floating_threshold指的是填充区域中的像素与任何相邻像素的差异。
mask指的是另一个用作绘图操作的像素级掩码的图像,掩码应该是一个只有黑色和白色像素的图像,并且因该与所处理的Image对象具有相同的大小,仅有掩码中设置的像素会被修改。
cartoon()方法会返回经过处理的Image对象。
cartoon()方法的使用示例如下所示:

import imageimg = image.Image(size=(320, 240))
img.cartoon(seed_threshold=0.2, floating_threshold=0.05)

image模块为Image对象提供了binary()方法,用于对图像进行二值滤波处理,binary()方法如下所示:
image.binary(thresholds, invert=False, zero=False, mask)
binary()方法用于对图像进行二值滤波处理,二值滤波处理后的图像中的所有像素会被设置为黑色或白色。
thresholds指的是阈值列表,方法会根据像素值是否在阈值列表中的阈值内,来决定将像素这是为黑色或者白色。
invert指的是是否对阈值进行反转操作。
zero指的是将阈值像素清零,并使不在阈值列表中的像素保持不变。
mask指的是另一个用作绘图操作的像素级掩码的图像,掩码应该是一个只有黑色和白色像素的图像,并且因该与所处理的Image对象具有相同的大小,仅有掩码中设置的像素会被修改。
binary()方法会返回经过处理的Image对象。
binary()方法的使用示例如下所示:

import imageimg = image.Image(size=(320, 240))
img.binary([(25, 94, -12, 32, -71, -12)], invert=True, zero=True)

image模块为Image对象提供了laplacian()方法,用于对图像进行边缘滤波处理,laplacian()方法如下所示:
image.laplacian(size, sharpen=False, mul, add=0, threshold=False, offset=0, invert=False, mask)
laplacian()方法用于对图像进行边缘滤波处理,具体的实现方式是使用拉普拉斯核对图像进行卷积。
size指的是卷积核的大小,可为1(33)、2(55)或更高值。
sharpen指的是是否改为锐化想,而不是仅输出未经过阈值处理的边缘检测图像,增加卷积核大小然后增加图像清晰度。
mul指的是用以与卷积结果相乘的数字,若不设置,则使用默认的自动值,该值将放置卷积输出中的缩放,可以进行全局对比度调整。
add指的是用来与每个像素卷积结果相加的数值,可以进行全局亮度调整。
threshold指的是是否开启图像的自适应阈值处理,开启后可以根据环境像素的亮度,将像素设置为1或者0。
offset指的是开启图像的自适应阈值处理后,如何将像素设置为1,若为负数,则会将更多的像素设置为1,若为正数,则仅将最强对比度的像素设置为1。
invert指的是是否反转二进制图像的输出结果。
mask指的是另一个用作绘图操作的像素级掩码的图像,掩码应该是一个只有黑色和白色像素的图像,并且因该与所处理的Image对象具有相同的大小,仅有掩码中设置的像素会被修改。
laplacian()方法会返回经过处理的Image对象。
laplacian()方法的使用示例如下所示:

import imageimg = image.Image(size=(320, 240))
img.laplacian(1)

image模块为Image对象提供了morph()方法,用于对图像进行卷积处理,morph()方法如下所示:
image.morph(size, kernel, mul, add=1, threshold=False, offset=0, invert=False, mask)
morph()方法用于对图像进行卷积处理,需要提供卷积操作使用的卷积核。
size指的是卷积核的大小,可为1(33)、2(55)或更高值。
mul指的是用以与卷积结果相乘的数字,若不设置,则使用默认的自动值,该值将放置卷积输出中的缩放,可以进行全局对比度调整。
add指的是用来与每个像素卷积结果相加的数值,可以进行全局亮度调整。
threshold指的是是否开启图像的自适应阈值处理,开启后可以根据环境像素的亮度,将像素设置为1或者0。
offset指的是开启图像的自适应阈值处理后,如何将像素设置为1,若为负数,则会将更多的像素设置为1,若为正数,则仅将最强对比度的像素设置为1。
invert指的是是否反转二进制图像的输出结果。
mask指的是另一个用作绘图操作的像素级掩码的图像,掩码应该是一个只有黑色和白色像素的图像,并且因该与所处理的Image对象具有相同的大小,仅有掩码中设置的像素会被修改。
morph()方法会返回经过处理的Image对象。
morph()方法的使用示例如下所示:

import imagekernrl = [-1,  0,  1,-2,  0,  2,-1,  0,  1
]
img = image.Image(size=(320, 240))
img.morph(1, kernrl)

image模块为Image对象提供了negate()方法,用于对图像进行像素翻转处理,negate()方法如下所示:
image.negate()
negate()方法用于对图像进行像素翻转处理,处理的速度非常快速,且能够对每个颜色通道的像素值进行数值转换。
negate()方法会返回经过处理的Image对象。
negate()方法的使用示例如下所示:

import imageimg = image.Image(size=(320, 240))
img.negate()

image模块为Image对象提供了rotation_corr()方法,用于对图像进行透视矫正处理,rotation_corr()方法如下所示:
image.rotation_corr(x_rotation=0, y_rotation=0, z_rotation=0, x_translation=0, y_translation=0, zoom=1, fov=60, corners)
roataion_corr()方法用于对图像进行透视矫正处理,通过对图像进行三维旋转来纠正图像中的透视问题。
x_rotation、y_rotation和z_rotation指的是图像绕X、Y和Z轴旋转的角度度数,即分别对应上下旋转、左右旋转和平面旋转。
x_translation和y_translation指的是图像旋转后沿X或Y转平移的单位数,因为转换应用于三维空间,因此单位并不是像素。
zoom指的是图像缩放的倍数,默认为1。
fov指的是在进行二维到三维投影时,在三维空间旋转图像之前内部使用的视场,当这个值接近0时,图像将被放置在距离视口无限远的地方,当这个值接近180时,图像将被放置在视口中,通常,不应该改变这个参数的默认值,但可以通过修改它来改变二维到三维的映射效果。
corners指的是一个拥有四个(x, y)tuples的list,代表四个corner用来创建四点对应单应性,将第一个corner映射到(0, 0),第二个corner(image_width-1, 0),第三个corner(image_width-1, image_height-1)和第四个corner(0, image_height-1),然后在图像被重新映射后应用三维旋转旋转,这个参数允许使用rotation_corr()方法来做一些事情,比如鸟瞰图转换。
rotation_corr()方法会返回经过处理的Image对象。
rotation_corr()方法的使用示例如下所示:

import imageimg = image.Image(size=(320, 240))
target_point = [(-50, -50),(img.width()-1, 0),(img.width()-1+50, img.height()-1+50),(0, img.height()-1)
]
img.rotation_corr(corners=target_point)

image模块为Image对象提供了replace()方法,用于对图像进行镜像和翻转处理,replace()方法如下所示:
image.replace(hmirror=False, vflip=False, mask)
replace()方法用于对图像进行镜像和翻转处理。
hmirror指的是是否对图像进行水平镜像处理。
vflip指的是是否对图像进行垂直翻转处理。
mask指的是另一个用作绘图操作的像素级掩码的图像,掩码应该是一个只有黑色和白色像素的图像,并且因该与所处理的Image对象具有相同的大小,仅有掩码中设置的像素会被修改。
replace()方法会返回经过处理的Image对象。
replace()方法的使用示例如下所示:

import imageimg = image.Image(size=(320, 240))
img.replace(hmirror=True)

34.2 硬件设计
34.2.1 例程功能

  1. 获取摄像头输出的图像,并使用image模块对图像进行一些处理后,将图像显示在LCD上。
  2. 当KEY0按键被按下后,切换image模块对图像的处理方式。
    34.2.2 硬件资源
    本章实验内容,主要讲解image模块的使用,无需关注硬件资源。
    34.2.3 原理图
    本章实验内容,主要讲解image模块的使用,无需关注原理图。
    34.3 程序设计
    34.3.1 image模块图像滤波方法介绍
    有关image模块图像滤波方法的介绍,请见第34.1小节《image模块图像滤波方法介绍》。
    34.3.2 程序流程图
    在这里插入图片描述

图34.3.2.1 image图像滤波实验流程图
34.3.3 main.py代码
main.py中的脚本代码如下所示:

from board import board_info
from fpioa_manager import fm
from maix import GPIO
import time
import lcd
import sensor
import gclcd.init()
sensor.reset()
sensor.set_framesize(sensor.QVGA)
sensor.set_pixformat(sensor.RGB565)
sensor.set_hmirror(False)type = 0
type_dict = {0: "Normal",1: "Adaptive Histogram Equalization",2: "Blur",3: "Cartoon",4: "Binary",5: "Edge",6: "Kernel",7: "Negative",8: "Perspective Correction",9: "Mirror & Flip"
}fm.register(board_info.KEY0, fm.fpioa.GPIOHS0)
key0 = GPIO(GPIO.GPIOHS0, GPIO.IN, GPIO.PULL_UP)def key_irq_handler(key):global key0global typetime.sleep_ms(20)if key is key0 and key.value() == 0:type = type + 1if type == len(type_dict):type = 0
key0.irq(key_irq_handler, GPIO.IRQ_FALLING, GPIO.WAKEUP_NOT_SUPPORT, 7)while True:img = sensor.snapshot()if type == 0:# 原图passelif type == 1:# 直方图均衡img.histeq(adaptive=True, clip_limit=3)elif type == 2:# 模糊滤波img.gaussian(2)elif type == 3:# 卡通滤波img.cartoon(seed_threshold=0.2, floating_thresholds=0.05)elif type == 4:# 二值滤波img.binary([(25, 94, -12, 32, -71, -12)], invert=True, zero=True)elif type == 5:# 边缘滤波img.laplacian(1)elif type == 6:kernrl = [-1,  0,  1,-2,  0,  2,-1,  0,  1]# 图像卷积img.morph(1, kernrl)elif type == 7:# 像素翻转img.negate()elif type == 8:target_point = [(-50, -50),(img.width()-1, 0),(img.width()-1+50, img.height()-1+50),(0, img.height()-1)]# 透视矫正img.rotation_corr(corners=target_point)elif type == 9:# 镜像和翻转img.replace(hmirror=True, vflip=True)else:type = 0img.draw_string(10, 10, type_dict[type], color=(255, 0, 0), scale=1.6)lcd.display(img)gc.collect()

可以看到一开始是先初始化了LCD、摄像头和中断按键,并且按下中断按键可以切换图像处理的方式。
接着在一个循环中不断地获取摄像头输出的图像,因为获取到的图像就是Image对象,因此可以直接调用image模块为Image对象提供的各种方法,然后就是对图像进行处理,最后在LCD显示处理好后的图像。
34.4 运行验证
将DNK210开发板连接CanMV IDE,点击CanMV IDE上的“开始(运行脚本)”按钮后,便能看到LCD上显示了处理后的摄像头图像,按下KEY0按键还能够切换处理方式,如下图所示:
在这里插入图片描述

图34.4.1 摄像头原图图像
在这里插入图片描述

图34.4.2 直方图均衡处理后图像
在这里插入图片描述

图34.4.3 模糊滤波处理后图像
在这里插入图片描述

图34.4.4 卡通滤波处理后图像
在这里插入图片描述

图34.4.5 二值滤波处理后图像
在这里插入图片描述

图34.4.6 边缘滤波处理后图像
在这里插入图片描述

图34.4.7 图像卷积处理后图像
在这里插入图片描述

图34.4.8 像素翻转处理后图像
在这里插入图片描述

图34.4.9 透视矫正处理后图像
在这里插入图片描述

图34.4.10 镜像和翻转处理后图像

这篇关于【正点原子K210连载】第三十四章 image图像滤波实验 摘自【正点原子】DNK210使用指南-CanMV版指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133204

相关文章

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

Java操作Word文档的全面指南

《Java操作Word文档的全面指南》在Java开发中,操作Word文档是常见的业务需求,广泛应用于合同生成、报表输出、通知发布、法律文书生成、病历模板填写等场景,本文将全面介绍Java操作Word文... 目录简介段落页头与页脚页码表格图片批注文本框目录图表简介Word编程最重要的类是org.apach

Spring WebFlux 与 WebClient 使用指南及最佳实践

《SpringWebFlux与WebClient使用指南及最佳实践》WebClient是SpringWebFlux模块提供的非阻塞、响应式HTTP客户端,基于ProjectReactor实现,... 目录Spring WebFlux 与 WebClient 使用指南1. WebClient 概述2. 核心依

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素