【正点原子K210连载】第三十四章 image图像滤波实验 摘自【正点原子】DNK210使用指南-CanMV版指南

本文主要是介绍【正点原子K210连载】第三十四章 image图像滤波实验 摘自【正点原子】DNK210使用指南-CanMV版指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第三十四章 image图像滤波实验

在上一章节中,介绍了image模块中元素绘制方法给的使用,本章将继续介绍image模块中图像滤波方法的使用。通过本章的学习,读者将学习到image模块中图像滤波的使用。
本章分为如下几个小节:
34.1 image模块图像滤波方法介绍
34.2 硬件设计
34.3 程序设计
34.4 运行验证

34.1 image模块图像滤波方法介绍
image模块为Image对象提供了histeq()方法,用于对图像进行直方图均衡处理,histeq()方法如下所示:
image.histeq(adaptive=False, clip_limit=-1)
histeq()方法用于对图像进行直方图均衡处理,直方图均衡处理能够使得图像中的对比度和亮度标准化。
adaptive指的是是否使用自适应直方图均衡算法,自适应直方图均衡算法通常比非自适应直方图均衡算法效果更好,但需要更长的运行时间,当为False时,使用非自适应直方图均衡算法,当为True时,使用自适应直方图均衡算法,默认为False。
clip_limit指的是自适应均衡对比度,默认为-1。
histeq()方法会返回经过处理的Image对象。
histeq()方法的使用示例如下所示:
import image

img = image.Image(size=(320, 240))
img.histeq(adaptive=True, clip_limit=3)
image模块为Image对象提供了gaussian()方法,用于对图像进行模糊滤波处理,gaussian()方法如下所示:
image.gaussian(size, unsharp=False, mul, add=0, threshold=False, offset=0, invert=False, mask)
gaussian()方法用于对图像进行模糊滤波处理,具体的实现方式是使用平滑高斯核对图像进行卷积。
size指的是卷积核的大小,可为1(33)、2(55)或更高值。
unsharp指的是执行非锐化掩膜操作,从而提高边缘的图像清晰度。
mul指的是用以与卷积结果相乘的数字,若不设置,则使用默认的自动值,该值将放置卷积输出中的缩放,可以进行全局对比度调整。
add指的是用来与每个像素卷积结果相加的数值,可以进行全局亮度调整。
threshold指的是是否开启图像的自适应阈值处理,开启后可以根据环境像素的亮度,将像素设置为1或者0。
offset指的是开启图像的自适应阈值处理后,如何将像素设置为1,若为负数,则会将更多的像素设置为1,若为正数,则仅将最强对比度的像素设置为1。
invert指的是是否反转二进制图像的输出结果。
mask指的是另一个用作绘图操作的像素级掩码的图像,掩码应该是一个只有黑色和白色像素的图像,并且因该与所处理的Image对象具有相同的大小,仅有掩码中设置的像素会被修改。
gaussian()方法会返回经过处理的Image对象。
gaussian()方法的使用示例如下所示:

import imageimg = image.Image(size=(320, 240))
img.gaussian(2)

image模块为Image对象提供了cartoon()方法,用于对图像进行卡通滤波处理,cartoon()方法如下所示:
image.cartoon(seed_threshold=0.05, floating_threshold=0.05, mask)
cartoon()方法用于对图像进行卡通滤波处理,对图像进行卡通滤波后,还会使用flood-fills算法填充图像中的所有像素区域,通过使图像的所有区域颜色变平来有效地从图像中去除纹理,为了获得最佳效果,图像应具有大量对比度,以使区域不会太容易相互渗透。
seed_threshold指的是填充区域中的像素与原始起始像素的差异。
floating_threshold指的是填充区域中的像素与任何相邻像素的差异。
mask指的是另一个用作绘图操作的像素级掩码的图像,掩码应该是一个只有黑色和白色像素的图像,并且因该与所处理的Image对象具有相同的大小,仅有掩码中设置的像素会被修改。
cartoon()方法会返回经过处理的Image对象。
cartoon()方法的使用示例如下所示:

import imageimg = image.Image(size=(320, 240))
img.cartoon(seed_threshold=0.2, floating_threshold=0.05)

image模块为Image对象提供了binary()方法,用于对图像进行二值滤波处理,binary()方法如下所示:
image.binary(thresholds, invert=False, zero=False, mask)
binary()方法用于对图像进行二值滤波处理,二值滤波处理后的图像中的所有像素会被设置为黑色或白色。
thresholds指的是阈值列表,方法会根据像素值是否在阈值列表中的阈值内,来决定将像素这是为黑色或者白色。
invert指的是是否对阈值进行反转操作。
zero指的是将阈值像素清零,并使不在阈值列表中的像素保持不变。
mask指的是另一个用作绘图操作的像素级掩码的图像,掩码应该是一个只有黑色和白色像素的图像,并且因该与所处理的Image对象具有相同的大小,仅有掩码中设置的像素会被修改。
binary()方法会返回经过处理的Image对象。
binary()方法的使用示例如下所示:

import imageimg = image.Image(size=(320, 240))
img.binary([(25, 94, -12, 32, -71, -12)], invert=True, zero=True)

image模块为Image对象提供了laplacian()方法,用于对图像进行边缘滤波处理,laplacian()方法如下所示:
image.laplacian(size, sharpen=False, mul, add=0, threshold=False, offset=0, invert=False, mask)
laplacian()方法用于对图像进行边缘滤波处理,具体的实现方式是使用拉普拉斯核对图像进行卷积。
size指的是卷积核的大小,可为1(33)、2(55)或更高值。
sharpen指的是是否改为锐化想,而不是仅输出未经过阈值处理的边缘检测图像,增加卷积核大小然后增加图像清晰度。
mul指的是用以与卷积结果相乘的数字,若不设置,则使用默认的自动值,该值将放置卷积输出中的缩放,可以进行全局对比度调整。
add指的是用来与每个像素卷积结果相加的数值,可以进行全局亮度调整。
threshold指的是是否开启图像的自适应阈值处理,开启后可以根据环境像素的亮度,将像素设置为1或者0。
offset指的是开启图像的自适应阈值处理后,如何将像素设置为1,若为负数,则会将更多的像素设置为1,若为正数,则仅将最强对比度的像素设置为1。
invert指的是是否反转二进制图像的输出结果。
mask指的是另一个用作绘图操作的像素级掩码的图像,掩码应该是一个只有黑色和白色像素的图像,并且因该与所处理的Image对象具有相同的大小,仅有掩码中设置的像素会被修改。
laplacian()方法会返回经过处理的Image对象。
laplacian()方法的使用示例如下所示:

import imageimg = image.Image(size=(320, 240))
img.laplacian(1)

image模块为Image对象提供了morph()方法,用于对图像进行卷积处理,morph()方法如下所示:
image.morph(size, kernel, mul, add=1, threshold=False, offset=0, invert=False, mask)
morph()方法用于对图像进行卷积处理,需要提供卷积操作使用的卷积核。
size指的是卷积核的大小,可为1(33)、2(55)或更高值。
mul指的是用以与卷积结果相乘的数字,若不设置,则使用默认的自动值,该值将放置卷积输出中的缩放,可以进行全局对比度调整。
add指的是用来与每个像素卷积结果相加的数值,可以进行全局亮度调整。
threshold指的是是否开启图像的自适应阈值处理,开启后可以根据环境像素的亮度,将像素设置为1或者0。
offset指的是开启图像的自适应阈值处理后,如何将像素设置为1,若为负数,则会将更多的像素设置为1,若为正数,则仅将最强对比度的像素设置为1。
invert指的是是否反转二进制图像的输出结果。
mask指的是另一个用作绘图操作的像素级掩码的图像,掩码应该是一个只有黑色和白色像素的图像,并且因该与所处理的Image对象具有相同的大小,仅有掩码中设置的像素会被修改。
morph()方法会返回经过处理的Image对象。
morph()方法的使用示例如下所示:

import imagekernrl = [-1,  0,  1,-2,  0,  2,-1,  0,  1
]
img = image.Image(size=(320, 240))
img.morph(1, kernrl)

image模块为Image对象提供了negate()方法,用于对图像进行像素翻转处理,negate()方法如下所示:
image.negate()
negate()方法用于对图像进行像素翻转处理,处理的速度非常快速,且能够对每个颜色通道的像素值进行数值转换。
negate()方法会返回经过处理的Image对象。
negate()方法的使用示例如下所示:

import imageimg = image.Image(size=(320, 240))
img.negate()

image模块为Image对象提供了rotation_corr()方法,用于对图像进行透视矫正处理,rotation_corr()方法如下所示:
image.rotation_corr(x_rotation=0, y_rotation=0, z_rotation=0, x_translation=0, y_translation=0, zoom=1, fov=60, corners)
roataion_corr()方法用于对图像进行透视矫正处理,通过对图像进行三维旋转来纠正图像中的透视问题。
x_rotation、y_rotation和z_rotation指的是图像绕X、Y和Z轴旋转的角度度数,即分别对应上下旋转、左右旋转和平面旋转。
x_translation和y_translation指的是图像旋转后沿X或Y转平移的单位数,因为转换应用于三维空间,因此单位并不是像素。
zoom指的是图像缩放的倍数,默认为1。
fov指的是在进行二维到三维投影时,在三维空间旋转图像之前内部使用的视场,当这个值接近0时,图像将被放置在距离视口无限远的地方,当这个值接近180时,图像将被放置在视口中,通常,不应该改变这个参数的默认值,但可以通过修改它来改变二维到三维的映射效果。
corners指的是一个拥有四个(x, y)tuples的list,代表四个corner用来创建四点对应单应性,将第一个corner映射到(0, 0),第二个corner(image_width-1, 0),第三个corner(image_width-1, image_height-1)和第四个corner(0, image_height-1),然后在图像被重新映射后应用三维旋转旋转,这个参数允许使用rotation_corr()方法来做一些事情,比如鸟瞰图转换。
rotation_corr()方法会返回经过处理的Image对象。
rotation_corr()方法的使用示例如下所示:

import imageimg = image.Image(size=(320, 240))
target_point = [(-50, -50),(img.width()-1, 0),(img.width()-1+50, img.height()-1+50),(0, img.height()-1)
]
img.rotation_corr(corners=target_point)

image模块为Image对象提供了replace()方法,用于对图像进行镜像和翻转处理,replace()方法如下所示:
image.replace(hmirror=False, vflip=False, mask)
replace()方法用于对图像进行镜像和翻转处理。
hmirror指的是是否对图像进行水平镜像处理。
vflip指的是是否对图像进行垂直翻转处理。
mask指的是另一个用作绘图操作的像素级掩码的图像,掩码应该是一个只有黑色和白色像素的图像,并且因该与所处理的Image对象具有相同的大小,仅有掩码中设置的像素会被修改。
replace()方法会返回经过处理的Image对象。
replace()方法的使用示例如下所示:

import imageimg = image.Image(size=(320, 240))
img.replace(hmirror=True)

34.2 硬件设计
34.2.1 例程功能

  1. 获取摄像头输出的图像,并使用image模块对图像进行一些处理后,将图像显示在LCD上。
  2. 当KEY0按键被按下后,切换image模块对图像的处理方式。
    34.2.2 硬件资源
    本章实验内容,主要讲解image模块的使用,无需关注硬件资源。
    34.2.3 原理图
    本章实验内容,主要讲解image模块的使用,无需关注原理图。
    34.3 程序设计
    34.3.1 image模块图像滤波方法介绍
    有关image模块图像滤波方法的介绍,请见第34.1小节《image模块图像滤波方法介绍》。
    34.3.2 程序流程图
    在这里插入图片描述

图34.3.2.1 image图像滤波实验流程图
34.3.3 main.py代码
main.py中的脚本代码如下所示:

from board import board_info
from fpioa_manager import fm
from maix import GPIO
import time
import lcd
import sensor
import gclcd.init()
sensor.reset()
sensor.set_framesize(sensor.QVGA)
sensor.set_pixformat(sensor.RGB565)
sensor.set_hmirror(False)type = 0
type_dict = {0: "Normal",1: "Adaptive Histogram Equalization",2: "Blur",3: "Cartoon",4: "Binary",5: "Edge",6: "Kernel",7: "Negative",8: "Perspective Correction",9: "Mirror & Flip"
}fm.register(board_info.KEY0, fm.fpioa.GPIOHS0)
key0 = GPIO(GPIO.GPIOHS0, GPIO.IN, GPIO.PULL_UP)def key_irq_handler(key):global key0global typetime.sleep_ms(20)if key is key0 and key.value() == 0:type = type + 1if type == len(type_dict):type = 0
key0.irq(key_irq_handler, GPIO.IRQ_FALLING, GPIO.WAKEUP_NOT_SUPPORT, 7)while True:img = sensor.snapshot()if type == 0:# 原图passelif type == 1:# 直方图均衡img.histeq(adaptive=True, clip_limit=3)elif type == 2:# 模糊滤波img.gaussian(2)elif type == 3:# 卡通滤波img.cartoon(seed_threshold=0.2, floating_thresholds=0.05)elif type == 4:# 二值滤波img.binary([(25, 94, -12, 32, -71, -12)], invert=True, zero=True)elif type == 5:# 边缘滤波img.laplacian(1)elif type == 6:kernrl = [-1,  0,  1,-2,  0,  2,-1,  0,  1]# 图像卷积img.morph(1, kernrl)elif type == 7:# 像素翻转img.negate()elif type == 8:target_point = [(-50, -50),(img.width()-1, 0),(img.width()-1+50, img.height()-1+50),(0, img.height()-1)]# 透视矫正img.rotation_corr(corners=target_point)elif type == 9:# 镜像和翻转img.replace(hmirror=True, vflip=True)else:type = 0img.draw_string(10, 10, type_dict[type], color=(255, 0, 0), scale=1.6)lcd.display(img)gc.collect()

可以看到一开始是先初始化了LCD、摄像头和中断按键,并且按下中断按键可以切换图像处理的方式。
接着在一个循环中不断地获取摄像头输出的图像,因为获取到的图像就是Image对象,因此可以直接调用image模块为Image对象提供的各种方法,然后就是对图像进行处理,最后在LCD显示处理好后的图像。
34.4 运行验证
将DNK210开发板连接CanMV IDE,点击CanMV IDE上的“开始(运行脚本)”按钮后,便能看到LCD上显示了处理后的摄像头图像,按下KEY0按键还能够切换处理方式,如下图所示:
在这里插入图片描述

图34.4.1 摄像头原图图像
在这里插入图片描述

图34.4.2 直方图均衡处理后图像
在这里插入图片描述

图34.4.3 模糊滤波处理后图像
在这里插入图片描述

图34.4.4 卡通滤波处理后图像
在这里插入图片描述

图34.4.5 二值滤波处理后图像
在这里插入图片描述

图34.4.6 边缘滤波处理后图像
在这里插入图片描述

图34.4.7 图像卷积处理后图像
在这里插入图片描述

图34.4.8 像素翻转处理后图像
在这里插入图片描述

图34.4.9 透视矫正处理后图像
在这里插入图片描述

图34.4.10 镜像和翻转处理后图像

这篇关于【正点原子K210连载】第三十四章 image图像滤波实验 摘自【正点原子】DNK210使用指南-CanMV版指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133204

相关文章

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

macOS怎么轻松更换App图标? Mac电脑图标更换指南

《macOS怎么轻松更换App图标?Mac电脑图标更换指南》想要给你的Mac电脑按照自己的喜好来更换App图标?其实非常简单,只需要两步就能搞定,下面我来详细讲解一下... 虽然 MACOS 的个性化定制选项已经「缩水」,不如早期版本那么丰富,www.chinasem.cn但我们仍然可以按照自己的喜好来更换

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

使用JavaScript将PDF页面中的标注扁平化的操作指南

《使用JavaScript将PDF页面中的标注扁平化的操作指南》扁平化(flatten)操作可以将标注作为矢量图形包含在PDF页面的内容中,使其不可编辑,DynamsoftDocumentViewer... 目录使用Dynamsoft Document Viewer打开一个PDF文件并启用标注添加功能扁平化

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资

电脑显示hdmi无信号怎么办? 电脑显示器无信号的终极解决指南

《电脑显示hdmi无信号怎么办?电脑显示器无信号的终极解决指南》HDMI无信号的问题却让人头疼不已,遇到这种情况该怎么办?针对这种情况,我们可以采取一系列步骤来逐一排查并解决问题,以下是详细的方法... 无论你是试图为笔记本电脑设置多个显示器还是使用外部显示器,都可能会弹出“无HDMI信号”错误。此消息可能

如何安装 Ubuntu 24.04 LTS 桌面版或服务器? Ubuntu安装指南

《如何安装Ubuntu24.04LTS桌面版或服务器?Ubuntu安装指南》对于我们程序员来说,有一个好用的操作系统、好的编程环境也是很重要,如何安装Ubuntu24.04LTS桌面... Ubuntu 24.04 LTS,代号 Noble NumBAT,于 2024 年 4 月 25 日正式发布,引入了众

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境