AI学习记录 - 解读llama3

2024-09-03 12:20
文章标签 ai 学习 记录 解读 llama3

本文主要是介绍AI学习记录 - 解读llama3,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

持续更新

这是github大佬的llama3的代码,我继续加上属于我自己的理解
https://github.com/naklecha/llama3-from-scratch

如何token化

special_tokens :token 就是你对自然语言的字符的拆分颗粒度以及拆分方式,在我同类文章当中有所介绍,包括bep算法概略介绍也有。下面代码加载llama3的token,然后自己添加上属于自己的token也就是special_tokens ,一般来说llama3训练主要以英文为主要,但是如果自己想要微调llama3变成中文法语德语的话,那肯定需要加上属于自己语言的token,虽然你不加也可以,原来的token词汇表肯定可以承接世界上所有的计算机语言,因为不管什么语言最终会转化为utf-8编码,但是单独的token训练出来效果会更好,不然你直接丢出一个中文训练集,对于llama来说,假设一个字 “好” 被拆分成3个utf-8编码,3个utf-8编码既承担了原有的英文语义,又要承担中文语义,fineturning的效果大概率不好。添加词汇表的时候,一般只能在最后面添加,因为词汇表其它位置它已经训练过了。

pat_str:就是对一个长文本是怎么拆分的,给出一段文本,“are you ok?” => are,you,ok,?,这就是依据正则表达式进行拆分,中文就是每个字都要拆分,拆分成小字符之后才会对每个单词进行token化。

下面是加载了llama3的词汇表,然后合并自己的special_token,成为了新的token词汇表,然后进行训练的。

from pathlib import Path
import tiktoken
from tiktoken.load import load_tiktoken_bpe
import torch
import json
import matplotlib.pyplot as plttokenizer_path = "Meta-Llama-3-8B/tokenizer.model"
special_tokens = ["<|begin_of_text|>","<|end_of_text|>","<|reserved_special_token_0|>","<|reserved_special_token_1|>","<|reserved_special_token_2|>","<|reserved_special_token_3|>","<|start_header_id|>","<|end_header_id|>","<|reserved_special_token_4|>","<|eot_id|>",  # end of turn] + [f"<|reserved_special_token_{i}|>" for i in range(5, 256 - 5)]
mergeable_ranks = load_tiktoken_bpe(tokenizer_path)
tokenizer = tiktoken.Encoding(name=Path(tokenizer_path).name,pat_str=r"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+",mergeable_ranks=mergeable_ranks,special_tokens={token: len(mergeable_ranks) + i for i, token in enumerate(special_tokens)},
)tokenizer.decode(tokenizer.encode("hello world!"))

如何embedding

大佬写的代码是

embedding_layer = torch.nn.Embedding(vocab_size, dim)
embedding_layer.weight.data.copy_(model["tok_embeddings.weight"])
token_embeddings_unnormalized = embedding_layer(tokens).to(torch.bfloat16)
token_embeddings_unnormalized.shape

embedding层形状为

torch.Size([17, 4096]) 

我自己画的图,下面是矩阵乘法,因为onehot编码其它都是0,只有一个是1,按照矩阵乘法的定义,这里刚刚好直接取词汇表的指定某一层,就符合矩阵乘法的结果。这里是第7000层即可。
在这里插入图片描述

这篇关于AI学习记录 - 解读llama3的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132940

相关文章

Mysql用户授权(GRANT)语法及示例解读

《Mysql用户授权(GRANT)语法及示例解读》:本文主要介绍Mysql用户授权(GRANT)语法及示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql用户授权(GRANT)语法授予用户权限语法GRANT语句中的<权限类型>的使用WITH GRANT

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

python3 gunicorn配置文件的用法解读

《python3gunicorn配置文件的用法解读》:本文主要介绍python3gunicorn配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python3 gunicorn配置文件配置文件服务启动、重启、关闭启动重启关闭总结python3 gun

关于pandas的read_csv方法使用解读

《关于pandas的read_csv方法使用解读》:本文主要介绍关于pandas的read_csv方法使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录pandas的read_csv方法解读read_csv中的参数基本参数通用解析参数空值处理相关参数时间处理相关

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE