vs2019编译opencv+contribute+gpu

2024-09-03 07:12

本文主要是介绍vs2019编译opencv+contribute+gpu,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、提前准备

vs2019、opencv4.4.0、opencv-contribute4.4.0、CUDA Toolkit 11.8(不能高于自己电脑的CUDA版本)、CUDNN8.9.6

ps:先提前准备环境

1)cmd中查看:nvidia-smi查看自己的显卡信息,不存在下述信息的话则需先安装英伟达显卡驱动程序。

从下图可知,本机显卡驱动支持的cuda最高版本为12.2,那么只需要安装比12.2低或者相同的CUDA库即可。

需要注意的是,有些高版本的cuda不支持vs2022,比如cuda11.2最高只支持vs2019,而不支持vs2022。

2)安装CUDA及CUDNN

安装完CUDA后将CUDNN内的文件拷贝到CUDA安装文件夹,与文件夹内的合并。

指令:nvcc -V 

在控制台中输入bandwidthTest.exe及deviceQuery.exe的所在目录,如我的:

F:\installfile\NVIDIA GPU Computing Toolkit\CUDA\v11.8\extras\demo_suite

运行该程序:./bandwidthTest.exe及 ./deviceQuery.exe

出现Result = PASS信息表示成功安装CUDA及CUDNN

2、cmake配置编译选项时出现的问题

Policy CMP0148 is not set: The FindPythonInterp and FindPythonLibs modules are removed. Run "cmake --help-policy CMP0148" for policy details.

解决办法:在文件OpenCVUtils.cmake

F:\installfile\opencv4.4.0\opencv+contrib+gpu\sources\cmake\OpenCVUtils.cmake

的第一行添加

if(POLICY CMP0148) 
cmake_policy(SET CMP0148 OLD)
endif()if(POLICY CMP0146) 
cmake_policy(SET CMP0146 OLD)
endif()

3、若用vs2022编译的话可能会在编译时出现很多报错,因此改为vs2019来配置及编译。

4、配置步骤:

1)打开cmake,输入源码路径及生成工程的路径,后

2)Configure结束后,在search框里搜索并配置一些选项:

  1. 勾选 BUILD_opencv_world(它会将生成的所有库都集中在opencv_world440.lib或opencv_world440d.lib一个包中,而不是分散存放的,便于后续配置工程项目)
  2. 配置 OPENCV_EXTRA_MODULES_PATH,填写contrib源码的modules文件夹的位置,如我的:
    F:\installfile\opencv4.4.0\opencv+contrib+gpu\opencv_contrib-4.4.0\modules
  3. 搜索“cuda”,勾选 BUILD_CUDA_STUBS、OPENCV_DNN_CUDA、WITH_CUDA
  4. 勾选 ENABLE_FAST_MATH 
  5. 勾选 OPENCV_ENABLE_NONFREE
  6. 取消勾选 OpenCV_GENERATE_SETUPVARS
  7. 分别搜索“python”,“java”,“js”,“tests”,分别取消勾选所有已经勾选的python、java、js、tests相关选项

3)点击Configure进行第二次Configure

4)新配置以下

  1. 勾选 CUDA_FAST_MATH
  2. CUDA_ARCH_BIN 填写对应GPU的算力指数,如果已经有了多个值,可以把其他的值删除以加速后续编译,算力指数查询链接:CUDA GPUs - Compute Capability | NVIDIA Developer

5)再次点击Configure,同时检查一下生成信息:

没有报错的话,接着点击Generate生成工程。

6)在自己camke配置的工程目录下,打开生成的工程

  1. 选择Release(或Debug)和x64平台
  2. 右键ALL_BUILD工程,点击  生成
  3. 右键INSTALL工程,点击  仅用于项目   点击     仅生成INSTALL

至此编译结束,编译生成的文件在上述步骤二配置cmake时指定的build文件夹下的install文件夹中。

7)配置vs的opencv工程:常规的添加库目录、包含目录以及附加依赖库,并用以下代码来检验opencv库是否具备CUDA的支持

#include <opencv2/core.hpp>
#include <opencv2/core/cuda.hpp>
#include <iostream>int main() 
{std::cout << "OpenCV version: " << CV_VERSION << std::endl;// 检查是否有可用的 CUDA 设备if (cv::cuda::getCudaEnabledDeviceCount() > 0) {std::cout << "CUDA is enabled and available devices found." << std::endl;} else {std::cout << "CUDA is not enabled or no CUDA devices found." << std::endl;}return 0;
}

这篇关于vs2019编译opencv+contribute+gpu的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132375

相关文章

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

Python如何将OpenCV摄像头视频流通过浏览器播放

《Python如何将OpenCV摄像头视频流通过浏览器播放》:本文主要介绍Python如何将OpenCV摄像头视频流通过浏览器播放的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完... 目录方法1:使用Flask + MJPEG流实现代码使用方法优点缺点方法2:使用WebSocket传输视

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元