【书生大模型实战营】进阶岛 第6关 MindSearch 快速部署

2024-09-03 06:36

本文主要是介绍【书生大模型实战营】进阶岛 第6关 MindSearch 快速部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 【书生大模型实战营】进阶岛 第6关 MindSearch 快速部署
  • MindSearch 部署到Github Codespace 和 Hugging Face Space
  • 创建开发机 & 环境配置
  • MindSearch下载及环境配置
  • 获取硅基流动API Key
  • 作业 - 基础任务
  • 在Github codespaces 启动 MindSearch
  • 通过 Github Codespace 完成HuggingFace Space部署
  • 把刚才准备的文件都copy进来

【书生大模型实战营】进阶岛 第6关 MindSearch 快速部署

MindSearch 部署到Github Codespace 和 Hugging Face Space

和原有的CPU版本相比区别是把internstudio换成了github codespace。

随着硅基流动提供了免费的 InternLM2.5-7B-Chat 服务(免费的 InternLM2.5-7B-Chat 真的很香),MindSearch 的部署与使用也就迎来了纯 CPU 版本,进一步降低了部署门槛。那就让我们来一起看看如何使用硅基流动的 API 来部署 MindSearch 吧。

创建开发机 & 环境配置

由于HuggingFace被墙,我们通过github-codespace 的 vscode Linux 环境提交到 hugging face。打开codespace主页,选择blank template,浏览器会自动在新的页面打开一个web版的vscode。
在这里插入图片描述

MindSearch下载及环境配置

#MindSearch下载
mkdir -p /workspaces/mindsearch
cd /workspaces/mindsearch
git clone https://github.com/InternLM/MindSearch.git
cd MindSearch && git checkout b832275 && cd …

#创建环境
conda create -n mindsearch python=3.10 -y
#激活环境
conda activate mindsearch
#安装依赖
pip install -r /workspaces/mindsearch/MindSearch/requirements.txt

获取硅基流动API Key

首先打开 https://account.siliconflow.cn/login 来注册硅基流动的账号。完成注册后,打开 https://cloud.siliconflow.cn/account/ak 来准备 API Key。首先创建新 API 密钥,然后点击密钥进行复制,以备后续使用。
在这里插入图片描述

作业 - 基础任务

将 MindSearch 部署到 HuggingFace,并提供截图。(记录复现过程并截图)

在Github codespaces 启动 MindSearch

启动后端
硅基流动 API 的相关配置已经集成在了 MindSearch 中,所以我们可以直接执行下面的代码来启动 MindSearch 的后端。

export SILICON_API_KEY=第二步中复制的密钥

cd /workspaces/mindsearch/MindSearch
python -m mindsearch.app --lang cn --model_format internlm_silicon --search_engine DuckDuckGoSearch
在这里插入图片描述

启动前端
在后端启动完成后,我们打开新终端运行如下命令来启动 MindSearch 的前端。

cd /workspaces/mindsearch/MindSearch
python frontend/mindsearch_gradio.py
在这里插入图片描述

通过InternLM 启动web浏览器访问
上述同样步骤在InternLM开发机(10%A100即可)部署启动后 把 8002 端口和 7882 端口都映射到本地:

ssh -CNg -L 8002:127.0.0.1:8002 -L 7882:127.0.0.1:7882 root@ssh.intern-ai.org.cn -p 42678
然后在本地浏览器中打开 localhost:7882 即可体验啦。
在这里插入图片描述
效果

如果遇到了 timeout 的问题,可以按照 文档 换用 Bing 的搜索接口。

通过 Github Codespace 完成HuggingFace Space部署

我们首先打开 https://huggingface.co/spaces ,并点击 Create new Space。然后进入 Settings,配置硅基流动的 API Key。选择 New secrets,name 一栏输入 SILICON_API_KEY,value 一栏输入你的 API Key 的内容。

在这里插入图片描述

先新建一个目录,准备提交到 HuggingFace Space 的全部文件。

#创建新目录
mkdir -p /root/mindsearch/mindsearch_deploy
#准备复制文件
cd /root/mindsearch
cp -r /root/mindsearch/MindSearch/mindsearch /root/mindsearch/mindsearch_deploy
cp /root/mindsearch/MindSearch/requirements.txt /root/mindsearch/mindsearch_deploy
#创建 app.py 作为程序入口
touch /root/mindsearch/mindsearch_deploy/app.py
其中,app.py 的内容如下:
import json
import os

import gradio as gr
import requests
from lagent.schema import AgentStatusCode

os.system(“python -m mindsearch.app --lang cn --model_format internlm_silicon &”)

PLANNER_HISTORY = []
SEARCHER_HISTORY = []

def rst_mem(history_planner: list, history_searcher: list):
‘’’
Reset the chatbot memory.
‘’’
history_planner = []
history_searcher = []
if PLANNER_HISTORY:
PLANNER_HISTORY.clear()
return history_planner, history_searcher

def format_response(gr_history, agent_return):
if agent_return[‘state’] in [
AgentStatusCode.STREAM_ING, AgentStatusCode.ANSWER_ING
]:
gr_history[-1][1] = agent_return[‘response’]
elif agent_return[‘state’] == AgentStatusCode.PLUGIN_START:
thought = gr_history[-1][1].split(‘')[0] if agent_return['response'].startswith('’):
gr_history[-1][1] = thought + ‘\n’ + agent_return[‘response’]
elif agent_return[‘state’] == AgentStatusCode.PLUGIN_END:
thought = gr_history[-1][1].split('')[0] if isinstance(agent_return['response'], dict): gr_history[-1][ 1] = thought + '\n' + f'json\n{json.dumps(agent_return[“response”], ensure_ascii=False, indent=4)}\n' # noqa: E501 elif agent_return['state'] == AgentStatusCode.PLUGIN_RETURN: assert agent_return['inner_steps'][-1]['role'] == 'environment' item = agent_return['inner_steps'][-1] gr_history.append([ None, f"json\n{json.dumps(item[‘content’], ensure_ascii=False, indent=4)}\n```"
])
gr_history.append([None, ‘’])
return

def predict(history_planner, history_searcher):

def streaming(raw_response):for chunk in raw_response.iter_lines(chunk_size=8192,decode_unicode=False,delimiter=b'\n'):if chunk:decoded = chunk.decode('utf-8')if decoded == '\r':continueif decoded[:6] == 'data: ':decoded = decoded[6:]elif decoded.startswith(': ping - '):continueresponse = json.loads(decoded)yield (response['response'], response['current_node'])global PLANNER_HISTORY
PLANNER_HISTORY.append(dict(role='user', content=history_planner[-1][0]))
new_search_turn = Trueurl = 'http://localhost:8002/solve'
headers = {'Content-Type': 'application/json'}
data = {'inputs': PLANNER_HISTORY}
raw_response = requests.post(url,headers=headers,data=json.dumps(data),timeout=20,stream=True)for resp in streaming(raw_response):agent_return, node_name = respif node_name:if node_name in ['root', 'response']:continueagent_return = agent_return['nodes'][node_name]['detail']if new_search_turn:history_searcher.append([agent_return['content'], ''])new_search_turn = Falseformat_response(history_searcher, agent_return)if agent_return['state'] == AgentStatusCode.END:new_search_turn = Trueyield history_planner, history_searcherelse:new_search_turn = Trueformat_response(history_planner, agent_return)if agent_return['state'] == AgentStatusCode.END:PLANNER_HISTORY = agent_return['inner_steps']yield history_planner, history_searcher
return history_planner, history_searcher

with gr.Blocks() as demo:
gr.HTML(“”“

MindSearch Gradio Demo

”“”)
gr.HTML(“”“

MindSearch is an open-source AI Search Engine Framework with Perplexity.ai Pro performance. You can deploy your own Perplexity.ai-style search engine using either closed-source LLMs (GPT, Claude) or open-source LLMs (InternLM2.5-7b-chat).

”“”)
gr.HTML(“”"

🔗 GitHub
📄 Arxiv
📚 Hugging Face Papers
🤗 Hugging Face Demo

“”")
with gr.Row():
with gr.Column(scale=10):
with gr.Row():
with gr.Column():
planner = gr.Chatbot(label=‘planner’,
height=700,
show_label=True,
show_copy_button=True,
bubble_full_width=False,
render_markdown=True)
with gr.Column():
searcher = gr.Chatbot(label=‘searcher’,
height=700,
show_label=True,
show_copy_button=True,
bubble_full_width=False,
render_markdown=True)
with gr.Row():
user_input = gr.Textbox(show_label=False,
placeholder=‘帮我搜索一下 InternLM 开源体系’,
lines=5,
container=False)
with gr.Row():
with gr.Column(scale=2):
submitBtn = gr.Button(‘Submit’)
with gr.Column(scale=1, min_width=20):
emptyBtn = gr.Button(‘Clear History’)
def user(query, history):return '', history + [[query, '']]submitBtn.click(user, [user_input, planner], [user_input, planner],queue=False).then(predict, [planner, searcher],[planner, searcher])
emptyBtn.click(rst_mem, [planner, searcher], [planner, searcher],queue=False)

demo.queue()
demo.launch(server_name=‘0.0.0.0’,
server_port=7860,
inbrowser=True,
share=True)

在最后,将 /root/mindsearch/mindsearch_deploy 目录下的文件(使用 git)提交到 HuggingFace Space 即可完成部署了。

部署到 HuggingFace Space
接下来创建一个有写权限的token。
在这里插入图片描述
从huggingface把空的代码仓库clone到codespace。在Codespaces shell 命令行窗口中执行:

cd /workspaces/codespaces-blank
git clone https://zhangdeqiang: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@huggingface.co/spaces/zed5337/MyMindSearch
codespace就是本地仓库,huggingface space是远程仓库,接下来使用方法就和常规的git一样了。

cd /workspaces/codespaces-blank/MyMindSearch

把刚才准备的文件都copy进来

cp -r /workspaces/mindsearch/mindsearch_deploy/* .

把上述代码提交到huggingface space。

在这里插入图片描述
后续一样就不在多做赘述。

这篇关于【书生大模型实战营】进阶岛 第6关 MindSearch 快速部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132302

相关文章

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)

《JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)》:本文主要介绍如何在IntelliJIDEA2020.1中创建和部署一个JavaWeb项目,包括创建项目、配置Tomcat服务... 目录简介:一、创建项目二、tomcat部署1、将tomcat解压在一个自己找得到路径2、在idea中添加

Python + Streamlit项目部署方案超详细教程(非Docker版)

《Python+Streamlit项目部署方案超详细教程(非Docker版)》Streamlit是一款强大的Python框架,专为机器学习及数据可视化打造,:本文主要介绍Python+St... 目录一、针对 Alibaba Cloud linux/Centos 系统的完整部署方案1. 服务器基础配置(阿里

Java 队列Queue从原理到实战指南

《Java队列Queue从原理到实战指南》本文介绍了Java中队列(Queue)的底层实现、常见方法及其区别,通过LinkedList和ArrayDeque的实现,以及循环队列的概念,展示了如何高效... 目录一、队列的认识队列的底层与集合框架常见的队列方法插入元素方法对比(add和offer)移除元素方法

Spring Boot基于 JWT 优化 Spring Security 无状态登录实战指南

《SpringBoot基于JWT优化SpringSecurity无状态登录实战指南》本文介绍如何使用JWT优化SpringSecurity实现无状态登录,提高接口安全性,并通过实际操作步骤... 目录Spring Boot 实战:基于 JWT 优化 Spring Security 无状态登录一、先搞懂:为什

C++11中的包装器实战案例

《C++11中的包装器实战案例》本文给大家介绍C++11中的包装器实战案例,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录引言1.std::function1.1.什么是std::function1.2.核心用法1.2.1.包装普通函数1.2.

Nginx概念、架构、配置与虚拟主机实战操作指南

《Nginx概念、架构、配置与虚拟主机实战操作指南》Nginx是一个高性能的HTTP服务器、反向代理服务器、负载均衡器和IMAP/POP3/SMTP代理服务器,它支持高并发连接,资源占用低,功能全面且... 目录Nginx 深度解析:概念、架构、配置与虚拟主机实战一、Nginx 的概念二、Nginx 的特点

Spring IOC核心原理详解与运用实战教程

《SpringIOC核心原理详解与运用实战教程》本文详细解析了SpringIOC容器的核心原理,包括BeanFactory体系、依赖注入机制、循环依赖解决和三级缓存机制,同时,介绍了SpringBo... 目录1. Spring IOC核心原理深度解析1.1 BeanFactory体系与内部结构1.1.1

SpringCloud Stream 快速入门实例教程

《SpringCloudStream快速入门实例教程》本文介绍了SpringCloudStream(SCS)组件在分布式系统中的作用,以及如何集成到SpringBoot项目中,通过SCS,可... 目录1.SCS 组件的出现的背景和作用2.SCS 集成srping Boot项目3.Yml 配置4.Sprin