Illustrated Guide to Monitoring and Tuning the Linux Networking Stack: Receiving Data

本文主要是介绍Illustrated Guide to Monitoring and Tuning the Linux Networking Stack: Receiving Data,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

太长不读(TL; DR)

这篇文章用一系列图表扩展了以前的博客文章Monitoring and Tuning the Linux Networking Stack: Receiving Data,旨在帮助读者形成一个更清晰的视野来了解Linux网络协议栈是如何工作的

在监控或调优 Linux 网络协议栈试没有捷径可走。如果你希望调整或优化每个组件及其相互作用,你就必须努力充分了解它们。也就是说,以前博客文章的长度可能使读者难以概念化各种组件如何相互作用。希望这个博客文章将有助于澄清这一点了。

Getting started

这些图表旨在概述 Linux 网络协议栈的工作原理,因此,许多细节被排除在外。为了获得完整的描述,我们鼓励读者阅读我们的博客文章 Monitoring and Tuning the Linux Networking Stack: Receiving Data,详细涵盖网络协议栈的各个方面。这些图示的目的是帮助读者形成一个思维的模型,在更高层面了解内核中的某些系统是如何相互作用的。

首先,让我们先看看一些重要的初始设置,这是理解数据包处理之前所必须的。

Initial setup

在这里插入图片描述

设备有许多方法可以提醒cpu的其余部分,某些工作已准备就绪。在网络设备的情况下,NIC 通常会触发 IRQ 中断信号来表示数据包已到达并准备等待处理。当 该IRQ 中断处理被Linux 内核执行时,它会以非常非常高的优先级运行,并且阻止触发其他中断( IRQ)。因此,设备驱动程序中的 IRQ 中断处理程序必须尽快执行,并将耗时的操作推迟到中断下半部执行。这就是 “softIRQ”存在的原因。

Linux 内核中的"softIRQ"组件是一个内核用于处理设备驱动程序中断(IRQ)上下文之外工作的组件,在网络设备的情况下,软中断系统负责处理即将传入的数据包。软中断是在在内核早期的启动过程中初始化的。

上图对应于softIRQ section of our network blog post,并显示了软中断系统及其在每个CPU内核线程的初始化。

软中断系统的初始化如下:

  • 1、内核软中断线程(每个CPU一个)由kernel/softirq.c中的spawn_ksoftirqd调用来自kernel/smpboot.c定义的smpboot_register_percpu_thread创建。如代码所见,run_ksoftirqd的函数被定义为thread_fn,即将在smpboot_thread_fn函数中循环调用。

    static struct smp_hotplug_thread softirq_threads = {                                 .store          = &ksoftirqd,.thread_should_run  = ksoftirqd_should_run,.thread_fn      = run_ksoftirqd,.thread_comm        = "ksoftirqd/%u",
    };                        static __init int spawn_ksoftirqd(void)
    {                         register_cpu_notifier(&cpu_nfb);BUG_ON(smpboot_register_percpu_thread(&softirq_threads));return 0;             
    }                      
    early_initcall(spawn_ksoftirqd);
    
  • 2、ksoftirqd 线程开始循环调用run_ksoftirqd功能进行处理。

  • 3、接下来,为每个 CPU 创建一个softnet_data结构。这个结构体是处理网络数据的重要数据结构。我们会在poll_list中再次看到。poll_list的NAPI 轮询操作结构是通过设备驱动程序调用napi_schedule或其他 NAPI API 调度的。

  • 4、net_dev_init 然后通过调用 open_softirq 向 softirq 系统注册NET_RX_SOFTIRQ软中断。注册的处理函数是net_rx_action。 这就是 softirq 内核线程将执行并用来处理数据包的功能。

Data arrives

在这里插入图片描述

Data arrives from the network!

当网络数据到达 NIC 网卡时,网卡会使用DMA将数据包写入RAM。在 igb 网络驱动程序中,在 RAM 中分配了一个环形缓冲区用来指向接收到的数据包。需要注意的是,某些 NICs 是“多队列”NICs,这意味着它们可以将传入的数据包 DMA 到 RAM 中的许多环形缓冲区中的一个。我们就会看到,这样的 NICs 能够利用多个处理器来处理传入的网络数据。为简单起见,上图仅显示了一个环形缓冲区,但根据您使用的 NIC 和硬件设置,您的系统上可能有多个队列。

阅读有关下面描述的过程的更多详细信息 in this section of the networking blog post.

让我们来看看接收数据的过程:

  1. 数据由 NIC 从网络接收。
  2. NIC 使用 DMA 将网络数据写入 RAM。
  3. NIC 发出 IRQ。
  4. 执行设备驱动程序注册的 IRQ 处理程序。
  5. IRQ 在 NIC 上被清除,以便它可以为新的数据包到达生成 IRQ。
  6. NAPI softIRQ 轮询循环是以调用 napi_schedule 开始。

对 napi_schedule 的调用触发了上图中步骤 5 - 8 。正如我们将看到的,NAPI softIRQ 轮询循环操作启动是通过简单地置位位域中的位并将结构添加到 poll_list 来进行处理。napi_schedule 并没有再进行其他工作,这正是驱动程序将处理推迟到 softIRQ 系统的方式。

继续上一节中的图表标示的数字分析:

  1. 驱动程序中对 napi_schedule 的调用使驱动程序的 NAPI 轮询结构添加到当前 CPU 的 poll_list 中。

  2. 设置 softirq 挂起位,以便该 CPU 上的 ksoftirqd 进程知道有数据包要处理。

  3. run_ksoftirqd 函数(由 ksoftirq 内核线程在循环中运行)执行。

  4. __do_softirq 被调用,它检查挂起的位域,看到一个 softIRQ 正在挂起,并调用为挂起的 softIRQ 注册的处理程序:net_rx_action 为传入的网络数据处理完成所有繁重的工作。

需要注意的是,softIRQ 内核线程正在执行的是 net_rx_action,而不是设备驱动程序 IRQ 处理程序。

Network data processing begins

在这里插入图片描述

现在,数据处理开始。net_rx_action 函数(从 ksoftirqd 内核线程调用)将开始处理已添加到当前 CPU 的 poll_list 的 NAPI 轮询结构。轮询结构一般在两种情况下添加:

  • 从设备驱动程序调用 napi_schedule
  • With an Inter-processor Interrupt in the case of Receive Packet Steering. Read more about how Receive Packet Steering uses IPIs to process packets.

我们将首先从 poll_list 获取驱动程序的 NAPI 结构时会发生什么介绍。(下一节 NAPI 结构如何注册到 用于 RPS 处理的IPIs)。

上图在此处here进行了深入解释,但可以总结如下:

  1. net_rx_action 循环首先检查 NAPI 轮询列表的 NAPI 结构。

  2. 检查预算和运行时间以确保 softIRQ 不会独占 CPU 时间。

  3. 调用注册的轮询函数。 在这种情况下,就是由 igb 驱动程序注册的 igb_poll 函数。

  4. 驱动程序的轮询功能从 RAM 中的环形缓冲区收集数据包(harvests packets from the ring buffer in RAM)。

  5. 数据包被移交给 napi_gro_receive,它将处理可能的Generic Receive Offloading。

  6. 数据包要么为 GRO 保留并且调用链在此结束,要么数据包被传递到 net_receive_skb 以继续前进到协议栈。

接下来我们将看到 netif_receive_skb 如何控制以在多个 CPU 之间均衡分配数据包处理。

Network data processing continues

在这里插入图片描述

网络数据处理从 netif_receive_skb 继续,但数据的路径取决于是否启用了接收数据包控制 (RPS)。缺省的 Linux 内核默认不会启用 RPS,如果您想使用它,则需要明确启用和配置它。

在禁用 RPS 的情况下,使用上图中的数字如下:

    1. netif_receive_skb 将数据传递给 __netif_receive_core。
    1. __netif_receive_core 将数据传送到任何抓包程序(如 PCAP)。
    1. __netif_receive_core 将数据传送到注册的协议层处理程序。在许多情况下,这将是 IPv4 协议栈已注册的 ip_rcv 函数。

在启用 RPS 的情况下:

    1. netif_receive_skb 将数据传递给 enqueue_to_backlog。
    1. 数据包放置在每个 CPU 的输入队列中进行处理。
    1. 远程 CPU 的 NAPI 结构被添加到该 CPU 的 poll_list 中,一个 IPI 排队,如果它尚未运行,它将触发远程 CPU 上的 softIRQ 内核线程唤醒
    1. 当远程 CPU 上的 ksoftirqd 内核线程运行时,它遵循上一节中描述的相同模式处理,但这一次,注册的轮询函数是 process_backlog,它将从当前 CPU 的输入队列中收集数据包。
    1. 数据包被传递到 __net_receive_skb_core
    1. __netif_receive_core 将数据传送到任何抓包程序(如 PCAP)
    1. __netif_receive_core 将数据传送到注册的协议层处理程序。 在许多情况下,这将是 IPv4 协议栈已注册的 ip_rcv 函数

Protocol stacks and userland sockets

接下来是协议栈、netfilter、berkley 包过滤器,最后是用户态套接字。这段代码路径很长,但线性且相对简单。

您可以继续按照网络数据的详细路径进行学习。 该描述的一个非常简短的高级摘要是:

  1. IPv4 协议层使用 ip_rcv 接收数据包。
  2. 执行 Netfilter 和路由优化。
  3. 发往当前系统的数据被传送到更高级别的协议层,如 UDP。
  4. UDP 协议层使用 udp_rcv 接收数据包,并通过 udp_queue_rcv_skb 和 sock_queue_rcv 将数据包排队到用户态套接字的接收缓冲区。 在排队到接收缓冲区之前,berkeley数据包过滤器要先进行处理。

请注意,在整个过程中多次提到 netfilter。 确切的位置可以在我们的详细描述中找到。found in our detailed walk-through

Conclusion

Linux 网络堆栈极其复杂,并且有许多不同的系统相互作用。 任何调整或监控这些复杂系统的努力都必须了解所有这些系统之间的相互作用以及一个系统中更改设置将如何影响其他系统。

这篇(简单)插图的博客文章试图使我们较长的博客文章更易于管理和理解。

这篇关于Illustrated Guide to Monitoring and Tuning the Linux Networking Stack: Receiving Data的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132203

相关文章

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Linux线程之线程的创建、属性、回收、退出、取消方式

《Linux线程之线程的创建、属性、回收、退出、取消方式》文章总结了线程管理核心知识:线程号唯一、创建方式、属性设置(如分离状态与栈大小)、回收机制(join/detach)、退出方法(返回/pthr... 目录1. 线程号2. 线程的创建3. 线程属性4. 线程的回收5. 线程的退出6. 线程的取消7.

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

linux解压缩 xxx.jar文件进行内部操作过程

《linux解压缩xxx.jar文件进行内部操作过程》:本文主要介绍linux解压缩xxx.jar文件进行内部操作,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、解压文件二、压缩文件总结一、解压文件1、把 xxx.jar 文件放在服务器上,并进入当前目录#

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

linux hostname设置全过程

《linuxhostname设置全过程》:本文主要介绍linuxhostname设置全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录查询hostname设置步骤其它相关点hostid/etc/hostsEDChina编程A工具license破解注意事项总结以RHE