Opencv中的直方图(1)计算反向投影直方图函数calcBackProject()的使用

本文主要是介绍Opencv中的直方图(1)计算反向投影直方图函数calcBackProject()的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

计算直方图的反向投影。

cv::calcBackProject 函数计算直方图的反向投影。也就是说,类似于 calcHist,在每个位置 (x, y),该函数收集输入图像中选定通道的值,并找到对应的直方图区间。但是,与其递增该区间值,该函数读取区间值,将其乘以 scale,并存储在 backProject(x, y) 中。从统计学的角度来看,该函数计算每个元素值相对于由直方图表示的经验概率分布的概率。例如,你可以如何找到并跟踪场景中的一个亮色物体:

在跟踪之前,让物体占据几乎整个画面,展示给摄像头。计算色调直方图。直方图可能会有强烈的峰值,对应于物体中的主导颜色。
在跟踪时,使用预先计算的直方图计算每个输入视频帧的色调平面的反向投影。对反向投影进行阈值处理以抑制弱颜色。可能还有意义的是抑制颜色饱和度不足、太暗或太亮的像素。
在结果图像中找到连通组件,并选择例如最大的组件。
这是 CamShift 颜色物体跟踪器的大致算法。

参数

  • 参数images 源数组。它们都应该具有相同的深度(CV_8U, CV_16U 或 CV_32F),并且具有相同的尺寸。每一个都可以有任意数量的通道。
  • 参数nimages 源图像的数量。
  • 参数channels用于计算反向投影的通道列表。通道的数量必须与直方图的维度相匹配。第一个数组的通道编号从 0 到 images[0].channels()-1,第二个数组的通道编号从 images[0].channels() 到 images[0].channels() + images[1].channels()-1,以此类推。
  • 参数hist 输入的直方图,它可以是密集的也可以是稀疏的。
  • 参数backProject 目标反向投影数组,它是一个单通道数组,具有与 images[0] 相同的尺寸和深度。
  • 参数ranges 每个维度的直方图区间边界的数组。参见 calcHist。
  • 参数scale 反向投影输出的可选比例因子。
  • 参数uniform 标志位,指示直方图是否是均匀的(参见上述说明)。

代码示例


#include <iostream>
#include <opencv2/opencv.hpp>using namespace std;
using namespace cv;int main()
{Mat src, hsvImg, hist;vector< Mat > hsv;int histSize = 5;src = imread( "/media/dingxin/data/study/OpenCV/sources/images/qiu.jpg" );imshow( "src", src );//转换为 HSV 通道图像cvtColor( src, hsvImg, COLOR_BGR2HSV );imshow( "hsvImg", hsvImg );//通道分离split( hsvImg, hsv );imshow( "hImg", hsv[ 0 ] );int channels[]        = { 0 };float hr[]            = { 0, 180 };const float* ranges[] = { hr };calcHist( &hsv[ 0 ], 1, &channels[ 0 ], Mat(), hist, 1, &histSize, &ranges[ 0 ] );normalize( hist, hist, 255, 0, NORM_L1 );imshow( "hist", hist );//计算反向投影Mat backImg;calcBackProject( &src, 1, &channels[ 0 ], hist, backImg, &ranges[ 0 ], 1 );imshow( "backImg", backImg );waitKey( 0 );
}

运行结果

在这里插入图片描述

这篇关于Opencv中的直方图(1)计算反向投影直方图函数calcBackProject()的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131651

相关文章

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

JSON Web Token在登陆中的使用过程

《JSONWebToken在登陆中的使用过程》:本文主要介绍JSONWebToken在登陆中的使用过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录JWT 介绍微服务架构中的 JWT 使用结合微服务网关的 JWT 验证1. 用户登录,生成 JWT2. 自定义过滤

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、