Python从0到100(五十七):机器学习-主成分分析机

2024-09-03 01:12

本文主要是介绍Python从0到100(五十七):机器学习-主成分分析机,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主成分分析是⼀种常⽤的降维技术,⽤于将⾼维数据集投影到低维空间中,同时保留数据集的主要特征。PCA通过寻找数据中最重要的⽅向(主成分),并将数据投影到这些⽅向上来实现降维。

1.基本原理

1、数据中心化:⾸先,对原始数据进⾏中⼼化处理,即将每个特征的均值减去每个数据点的对应特征值,以确保数据的均值为零。
2、协方差矩阵:然后,计算数据的协⽅差矩阵,该矩阵表示了不同特征之间的关联性。
3、特征值分解:对协⽅差矩阵进⾏特征值分解,找到其特征值和特征向量。
4、选择主成分:选择具有最⼤特征值的特征向量,这些特征向量构成了数据在低维⼦空间上的新坐标轴,被称为主成分。
5、投影:将原始数据投影到所选的主成分上,从⽽实现数据的降维。

2.公式模型

1、数据中⼼化:对于⼀个包含m个样本和n个特征的数据矩阵 ,⾸先计算每个特征的均值 ,然后进⾏中⼼化处理,得到中⼼化的数据矩阵 :
在这里插入图片描述
2、协方差矩阵:计算中⼼化数据的协⽅差矩阵C ,m其中 是样本数:
在这里插入图片描述

3、特征值分解:对协⽅差矩阵C进⾏特征值分解,得到特征值y1,y2,...,yn和对应的特征向量v1,v2,...,vn。特征向量vi代表数据在新的主成分⽅向上的投影。
4、选择主成分:通常,选择前k个特征值对应的特征向量,它们构成了数据的主成分。这些特征向量通常按照特征值的大小降序排列。
5、投影:将原始数据矩阵X投影到所选的主成分上,得到降维后的数据矩阵Y
Y=VX
其中,V 是包含选定主成分特征向量的矩阵。
通过PCA,可以将⾼维数据映射到低维空间,从⽽减少了数据的维度。这有助于数据可视化、去除冗余特征、加速机器学习模型的训练,并提⾼模型的泛化性能。选择合适的降维维度(主成分数量)是PCA的⼀个关键参数,通常需要根据问题和性能需求进⾏调整。

3.优缺点

优点:
1. 降低数据维度:PCA能够将⾼维数据降维到较低维度,减少数据存储和计算成本。
2. 保留数据主要特征:PCA通过保留数据集中⽅差最⼤的⽅向,尽可能地保留了数据的主要特征。
3. 减少数据噪⾳:PCA可以将数据投影到主成分上,减少数据中的噪⾳和冗余信息。

缺点:

1. 对线性关系敏感:PCA假设数据是线性相关的,对⾮线性关系的数据降维效果可能不佳。
6. 可解释性差:PCA得到的主成分通常难以解释其含义,因为它是数据的线性组合。
7. 对异常值敏感:PCA对异常值较为敏感,可能会影响主成分的计算结果。

4.适用场景

主成分分析适⽤于以下场景:

  1. 数据维度较⾼:当数据维度较⾼时,可以使⽤PCA将数据降维到较低维度。
  2. 数据存在多重共线性:当数据中存在多重共线性(即特征之间存在线性相关性)时,PCA可以减少特征之间
    的冗余信息。
  3. 数据可视化:PCA可以将⾼维数据可视化到⼆维或三维空间中,帮助⼈们理解数据的结构和特征。

主成分分析可以帮助我们减少数据的维度并保留数据的主要特征。然⽽,在使⽤PCA时需要注意数据的线性关系和异常值的影响

5.手写数字识别数据集主成分分析

使⽤⼿写数字识别数据集(MNIST dataset)进⾏主成分分析,并展示降维后的数据可视化结果:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
# 加载⼿写数字识别数据集
digits = load_digits()
X = digits.data
y = digits.target
# 构建PCA模型并拟合数据
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)
# 可视化降维后的数据
plt.figure(figsize=(10, 8))
scatter = plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y, cmap='viridis', s=20, alpha=0.7)
plt.colorbar(scatter)
plt.title('2D PCA Visualization of MNIST Dataset')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.show()

⾸先加载了⼿写数字识别数据集,并使⽤PCA将数据降维到2维空间。然后绘制降维后的数据的散点图,其中每个点代表⼀个⼿写数字样本,不同颜⾊代表不同的数字类别。
在这里插入图片描述

这篇关于Python从0到100(五十七):机器学习-主成分分析机的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131601

相关文章

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

Python海象运算符:=的具体实现

《Python海象运算符:=的具体实现》海象运算符又称​​赋值表达式,Python3.8后可用,其核心设计是在表达式内部完成变量赋值并返回该值,从而简化代码逻辑,下面就来详细的介绍一下如何使用,感兴趣... 目录简介​​条件判断优化循环控制简化​推导式高效计算​正则匹配与数据提取​性能对比简介海象运算符

python项目环境切换的几种实现方式

《python项目环境切换的几种实现方式》本文主要介绍了python项目环境切换的几种实现方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 如何在不同python项目中,安装不同的依赖2. 如何切换到不同项目的工作空间3.创建项目