[pytorch] --- pytorch基础之损失函数与反向传播

2024-09-02 17:04

本文主要是介绍[pytorch] --- pytorch基础之损失函数与反向传播,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 损失函数

1.1 Loss Function的作用

  • 每次训练神经网络的时候都会有一个目标,也会有一个输出。目标和输出之间的误差,就是用Loss Function来衡量的。所以Loss误差是越小越好的。
  • 此外,我们可以根据误差Loss,指导输出output接近目标target。即我们可以以Loss为依据,不断训练神经网络,优化神经网络中各个模块,从而优化output 。

Loss Function的作用:
(1)计算实际输出和目标之间的差距
(2)为我们更新输出提供一定的依据,这个提供依据的过程也叫反向传播。

我们可以看下pytorch为我们提供的损失函数:https://pytorch.org/docs/stable/nn.html#loss-functions

1.2 损失函数简单示例

以L1Loss损失函数为例子,他其实很简单,就是把实际值与目标值,挨个相减,再求个均值。就是结果。(这个结果就反映了实际值的好坏程度,这个结果越小,说明越靠近目标值)
在这里插入图片描述
示例代码

import torch
from torch.nn import L1Lossinputs = torch.tensor([1,2,3],dtype=torch.float32) # 实际值
targets = torch.tensor([1,2,5],dtype=torch.float32) # 目标值
loss = L1Loss()
result = loss(inputs,targets)
print(result)

输出结果:tensor(0.6667)
接下来我们看下两个常用的损失函数:均方差和交叉熵误差

1.3 均方差

均方差:实际值与目标值对应做差,再平方,再求和,再求均值。
那么套用刚才的例子就是:(0+0+2^2)/3=4/3=1.33333…

代码实现

import torch
from torch.nn import L1Loss, MSELossinputs = torch.tensor([1,2,3],dtype=torch.float32) # 实际值
targets = torch.tensor([1,2,5],dtype=torch.float32) # 目标值
loss_mse = MSELoss()result = loss_mse(inputs,targets)
print(result)

输出结果:tensor(1.3333)

1.4 交叉熵误差:

这个比较复杂一点,首先我们看官方文档给出的公式
先放一个别人的解释:https://www.jianshu.com/p/6049dbc1b73f
这里先用代码实现一下他的简单用法:

import torch
from torch.nn import L1Loss, MSELoss, CrossEntropyLossx = torch.tensor([0.1,0.2,0.3]) # 预测出三个类别的概率值
y = torch.tensor([1]) # 目标值  应该是这三类中的第二类 也就是下标为1(从0开始的)
x = torch.reshape(x,(1,3)) # 修改格式  交叉熵函数的要求格式是 (N,C) N是bitch_size C是类别
# print(x.shape)
loss_cross = CrossEntropyLoss()
result = loss_cross(x,y)
print(result)

输出结果:tensor(1.1019)

1.5 如何在神经网络中用到Loss Function

# -*- coding: utf-8 -*-
# 作者:小土堆
# 公众号:土堆碎念
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoaderdataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),download=True)dataloader = DataLoader(dataset, batch_size=1)class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__()self.model1 = Sequential(Conv2d(3, 32, 5, padding=2),MaxPool2d(2),Conv2d(32, 32, 5, padding=2),MaxPool2d(2),Conv2d(32, 64, 5, padding=2),MaxPool2d(2),Flatten(),Linear(1024, 64),Linear(64, 10))def forward(self, x):x = self.model1(x)return xloss = nn.CrossEntropyLoss()
tudui = Tudui()
for data in dataloader:imgs, targets = dataoutputs = tudui(imgs)result_loss = loss(outputs, targets)print(result_loss)

2 反向传播

所谓的反向传播,就是利用我们得到的loss值,来对我们神经网络中的一些参数做调整,以达到loss值降低的目的。(图片经过一层一层网络的处理,最终得到结果,这是正向传播。最终结果与期望值运算得到loss,用loss反过来调整参数,叫做反向传播。个人理解,不一定严谨!)

2.1 backward

这里利用loss来调整参数,主要使用的方法是梯度下降法。
这个方法原理其实还是有点复杂的,但是pytorch为我们实现好了,所以用起来很简单。
调用损失函数得到的值的backward函数即可。

loss = CrossEntropyLoss() # 定义loss函数
# 实例化这个网络
test = Network()
for data in dataloader:imgs,targets = dataoutputs = test(imgs) # 输入图片result_loss = loss(outputs,targets)result_loss.backward() # 反向传播print('ok')

打断点调试,可以看到,grad属性被赋予了一些值。如果不用反向传播,是没有值的
当然,计算出这个grad值只是梯度下降法的第一步,算出了梯度,如何下降呢,要靠优化器

2.2 optimizer

优化器也有好几种,官网对优化器的介绍:https://pytorch.org/docs/stable/optim.html
不同的优化器需要设置的参数不同,但是有两个是大部分都有的:模型参数与学习速率
我们以SDG优化器为例,看下用法:

# 实例化这个网络
test = Network()
loss = CrossEntropyLoss() # 定义loss函数
# 构造优化器
# 这里我们选择的优化器是SGD 传入两个参数 第一个是个模型test的参数 第二个是学习率
optim = torch.optim.SGD(test.parameters(),lr=0.01)for data in dataloader:imgs,targets = dataoutputs = test(imgs) # 输入图片result_loss = loss(outputs,targets) # 计算lossoptim.zero_grad() #因为这是在循环里面 所以每次开始优化之前要把梯度置为0 防止上一次的结果影响这一次result_loss.backward() # 反向传播 求得梯度optim.step() # 对参数进行调优

这里面我们刚学得主要是这三行:
清零,反向传播求梯度,调优

optim.zero_grad() #因为这是在循环里面 所以每次开始优化之前要把梯度置为0 防止上一次的结果影响这一次
result_loss.backward() # 反向传播 求得梯度
optim.step() # 对参数进行调优

我们可以打印一下loss,看下调优后得loss有什么变化。
注意:我们dataloader是把数据拿出来一遍,那么看了一遍之后,经过这一遍的调整,下一遍再看的时候,loss才有变化。
所以,我们先让让他学习20轮,然后看一下每一轮的loss是多少

# 实例化这个网络
test = Network()
loss = CrossEntropyLoss() # 定义loss函数
# 构造优化器
# 这里我们选择的优化器是SGD 传入两个参数 第一个是个模型test的参数 第二个是学习率
optim = torch.optim.SGD(test.parameters(),lr=0.01)
for epoch in range(20):running_loss = 0.0for data in dataloader:imgs,targets = dataoutputs = test(imgs) # 输入图片result_loss = loss(outputs,targets) # 计算lossoptim.zero_grad() #因为这是在循环里面 所以每次开始优化之前要把梯度置为0 防止上一次的结果影响这一次result_loss.backward() # 反向传播 求得梯度optim.step() # 对参数进行调优running_loss = running_loss + result_loss # 记录下这一轮中每个loss的值之和print(running_loss) # 打印每一轮的loss值之和

可以看到,loss之和一次比一次降低了。

这篇关于[pytorch] --- pytorch基础之损失函数与反向传播的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1130544

相关文章

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

pytorch之torch.flatten()和torch.nn.Flatten()的用法

《pytorch之torch.flatten()和torch.nn.Flatten()的用法》:本文主要介绍pytorch之torch.flatten()和torch.nn.Flatten()的用... 目录torch.flatten()和torch.nn.Flatten()的用法下面举例说明总结torch

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序