[pytorch] --- pytorch基础之损失函数与反向传播

2024-09-02 17:04

本文主要是介绍[pytorch] --- pytorch基础之损失函数与反向传播,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 损失函数

1.1 Loss Function的作用

  • 每次训练神经网络的时候都会有一个目标,也会有一个输出。目标和输出之间的误差,就是用Loss Function来衡量的。所以Loss误差是越小越好的。
  • 此外,我们可以根据误差Loss,指导输出output接近目标target。即我们可以以Loss为依据,不断训练神经网络,优化神经网络中各个模块,从而优化output 。

Loss Function的作用:
(1)计算实际输出和目标之间的差距
(2)为我们更新输出提供一定的依据,这个提供依据的过程也叫反向传播。

我们可以看下pytorch为我们提供的损失函数:https://pytorch.org/docs/stable/nn.html#loss-functions

1.2 损失函数简单示例

以L1Loss损失函数为例子,他其实很简单,就是把实际值与目标值,挨个相减,再求个均值。就是结果。(这个结果就反映了实际值的好坏程度,这个结果越小,说明越靠近目标值)
在这里插入图片描述
示例代码

import torch
from torch.nn import L1Lossinputs = torch.tensor([1,2,3],dtype=torch.float32) # 实际值
targets = torch.tensor([1,2,5],dtype=torch.float32) # 目标值
loss = L1Loss()
result = loss(inputs,targets)
print(result)

输出结果:tensor(0.6667)
接下来我们看下两个常用的损失函数:均方差和交叉熵误差

1.3 均方差

均方差:实际值与目标值对应做差,再平方,再求和,再求均值。
那么套用刚才的例子就是:(0+0+2^2)/3=4/3=1.33333…

代码实现

import torch
from torch.nn import L1Loss, MSELossinputs = torch.tensor([1,2,3],dtype=torch.float32) # 实际值
targets = torch.tensor([1,2,5],dtype=torch.float32) # 目标值
loss_mse = MSELoss()result = loss_mse(inputs,targets)
print(result)

输出结果:tensor(1.3333)

1.4 交叉熵误差:

这个比较复杂一点,首先我们看官方文档给出的公式
先放一个别人的解释:https://www.jianshu.com/p/6049dbc1b73f
这里先用代码实现一下他的简单用法:

import torch
from torch.nn import L1Loss, MSELoss, CrossEntropyLossx = torch.tensor([0.1,0.2,0.3]) # 预测出三个类别的概率值
y = torch.tensor([1]) # 目标值  应该是这三类中的第二类 也就是下标为1(从0开始的)
x = torch.reshape(x,(1,3)) # 修改格式  交叉熵函数的要求格式是 (N,C) N是bitch_size C是类别
# print(x.shape)
loss_cross = CrossEntropyLoss()
result = loss_cross(x,y)
print(result)

输出结果:tensor(1.1019)

1.5 如何在神经网络中用到Loss Function

# -*- coding: utf-8 -*-
# 作者:小土堆
# 公众号:土堆碎念
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoaderdataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),download=True)dataloader = DataLoader(dataset, batch_size=1)class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__()self.model1 = Sequential(Conv2d(3, 32, 5, padding=2),MaxPool2d(2),Conv2d(32, 32, 5, padding=2),MaxPool2d(2),Conv2d(32, 64, 5, padding=2),MaxPool2d(2),Flatten(),Linear(1024, 64),Linear(64, 10))def forward(self, x):x = self.model1(x)return xloss = nn.CrossEntropyLoss()
tudui = Tudui()
for data in dataloader:imgs, targets = dataoutputs = tudui(imgs)result_loss = loss(outputs, targets)print(result_loss)

2 反向传播

所谓的反向传播,就是利用我们得到的loss值,来对我们神经网络中的一些参数做调整,以达到loss值降低的目的。(图片经过一层一层网络的处理,最终得到结果,这是正向传播。最终结果与期望值运算得到loss,用loss反过来调整参数,叫做反向传播。个人理解,不一定严谨!)

2.1 backward

这里利用loss来调整参数,主要使用的方法是梯度下降法。
这个方法原理其实还是有点复杂的,但是pytorch为我们实现好了,所以用起来很简单。
调用损失函数得到的值的backward函数即可。

loss = CrossEntropyLoss() # 定义loss函数
# 实例化这个网络
test = Network()
for data in dataloader:imgs,targets = dataoutputs = test(imgs) # 输入图片result_loss = loss(outputs,targets)result_loss.backward() # 反向传播print('ok')

打断点调试,可以看到,grad属性被赋予了一些值。如果不用反向传播,是没有值的
当然,计算出这个grad值只是梯度下降法的第一步,算出了梯度,如何下降呢,要靠优化器

2.2 optimizer

优化器也有好几种,官网对优化器的介绍:https://pytorch.org/docs/stable/optim.html
不同的优化器需要设置的参数不同,但是有两个是大部分都有的:模型参数与学习速率
我们以SDG优化器为例,看下用法:

# 实例化这个网络
test = Network()
loss = CrossEntropyLoss() # 定义loss函数
# 构造优化器
# 这里我们选择的优化器是SGD 传入两个参数 第一个是个模型test的参数 第二个是学习率
optim = torch.optim.SGD(test.parameters(),lr=0.01)for data in dataloader:imgs,targets = dataoutputs = test(imgs) # 输入图片result_loss = loss(outputs,targets) # 计算lossoptim.zero_grad() #因为这是在循环里面 所以每次开始优化之前要把梯度置为0 防止上一次的结果影响这一次result_loss.backward() # 反向传播 求得梯度optim.step() # 对参数进行调优

这里面我们刚学得主要是这三行:
清零,反向传播求梯度,调优

optim.zero_grad() #因为这是在循环里面 所以每次开始优化之前要把梯度置为0 防止上一次的结果影响这一次
result_loss.backward() # 反向传播 求得梯度
optim.step() # 对参数进行调优

我们可以打印一下loss,看下调优后得loss有什么变化。
注意:我们dataloader是把数据拿出来一遍,那么看了一遍之后,经过这一遍的调整,下一遍再看的时候,loss才有变化。
所以,我们先让让他学习20轮,然后看一下每一轮的loss是多少

# 实例化这个网络
test = Network()
loss = CrossEntropyLoss() # 定义loss函数
# 构造优化器
# 这里我们选择的优化器是SGD 传入两个参数 第一个是个模型test的参数 第二个是学习率
optim = torch.optim.SGD(test.parameters(),lr=0.01)
for epoch in range(20):running_loss = 0.0for data in dataloader:imgs,targets = dataoutputs = test(imgs) # 输入图片result_loss = loss(outputs,targets) # 计算lossoptim.zero_grad() #因为这是在循环里面 所以每次开始优化之前要把梯度置为0 防止上一次的结果影响这一次result_loss.backward() # 反向传播 求得梯度optim.step() # 对参数进行调优running_loss = running_loss + result_loss # 记录下这一轮中每个loss的值之和print(running_loss) # 打印每一轮的loss值之和

可以看到,loss之和一次比一次降低了。

这篇关于[pytorch] --- pytorch基础之损失函数与反向传播的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1130544

相关文章

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

C 语言基础之数组

文章目录 什么是数组数组变量的声明多维数组 什么是数组 数组,顾名思义,就是一组数。 假如班上有 30 个同学,让你编程统计每个人的分数,求最高分、最低分、平均分等。如果不知道数组,你只能这样写代码: int ZhangSan_score = 95;int LiSi_score = 90;......int LiuDong_score = 100;int Zhou

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据