东南大学研究生-数值分析上机题(2023)Python 6 常微分方程数值解法

本文主要是介绍东南大学研究生-数值分析上机题(2023)Python 6 常微分方程数值解法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

常微分方程初值问题数值解

6.1 题目

  1. 编制RK4方法的通用程序;
  2. 编制AB4方法的通用程序(由RK4提供初值);
  3. 编制AB4-AM4预测校正方法通用程序(由RK4提供初值);
  4. 编制带改进的AB4-AM4预测校正方法通用程序(由RK4提供初值);
  5. 对于初值问题
    { y ′ = − x 2 y 2 , 0 ≤ x ≤ 1.5 , y ( 0 ) = 3 \begin{cases} y'=-x^{2}y^{2}, & 0\leq x \leq 1.5,\\ y(0)=3 & \\ \end{cases} {y=x2y2,y(0)=30x1.5,
    取步长 h = 0.1 h=0.1 h=0.1,应用(1)-(4)中的四种方法进行计算,并将计算结果和精确解 y ( x ) = 3 / ( 1 + x 3 ) y(x)=3/(1+x^3) y(x)=3/(1+x3)作比较;
  6. 通过本上机题,你能得到哪些结论?

6.2 Python源程序

# 定义一阶微分方程  
def y_fxy(x, y):  return - (x ** 2) * (y ** 2)  # 定义一阶微分方程的精确解 函数  
def y(x):  return 3 / (1 + x ** 3)  # RK4  
def rk4(y0, h_, x0, xi):  N = int((xi - x0) / h_)  # 运算的次数  x = [x0]  y_pdt = [y0]  # 近似解  y_real = [y0]  err_list = [y0-y0]  for i in range(N):  k1 = y_fxy(x[-1], y_pdt[-1])  k2 = y_fxy(x[-1] + 1 / 2 * h_, y_pdt[-1] + 1 / 2 * h_ * k1)  k3 = y_fxy(x[-1] + 1 / 2 * h_, y_pdt[-1] + 1 / 2 * h_ * k2)  k4 = y_fxy(x[-1] + h_, y_pdt[-1] + h_ * k3)  y_pdt.append(y_pdt[-1] + h_ / 6 * (k1 + 2 * k2 + 2 * k3 + k4))  x.append(x[-1]+h_)  y_real.append(y(x[-1]))  err_list.append(y_real[-1] - y_pdt[-1])  return x, y_pdt, y_real, err_list  # AB4  
def ab4(y0, h_, x0, xi):  N = int((xi - x0) / h_)  # 运算的次数  x, y_pdt, y_real, err_list = rk4(y0, h_, x0, x0 + 3 * h_) # y0给定 y1,y2,y3由RK4得出  for i in range(3, N):  y_pdt.append(y_pdt[-1] + h_ / 24 * \  (55 * y_fxy(x[-1], y_pdt[-1]) - 59 * y_fxy(x[-2], y_pdt[-2]) + \  37 * y_fxy(x[-3], y_pdt[-3]) - 9 * y_fxy(x[-4], y_pdt[-4])))  x.append(x[-1]+h_)  y_real.append(y(x[-1]))  err_list.append(y_real[-1] - y_pdt[-1])  return x, y_pdt, y_real, err_list  # AB4_AM4预测算法  
def ab4_am4(y0, h_, x0, xi):  N = int((xi - x0) / h_)  # 运算的次数  x, y_pdt, y_real, err_list = rk4(y0, h_, x0, x0 + 3 * h_) # y0给定 y1,y2,y3由RK4得出  for i in range(3, N):  y_pdt.append(y_pdt[-1] + h_ / 24 * \  (55 * y_fxy(x[-1], y_pdt[-1]) - 59 * y_fxy(x[-2], y_pdt[-2]) + \  37 * y_fxy(x[-3], y_pdt[-3]) - 9 * y_fxy(x[-4], y_pdt[-4])))  x.append(x[-1] + h_)  y_pdt[-1] = y_pdt[-2] + h_ / 24 * \  (9 * y_fxy(x[-1], y_pdt[-1]) + 19 * y_fxy(x[-2], y_pdt[-2]) - \  5 * y_fxy(x[-3], y_pdt[-3]) + y_fxy(x[-4], y_pdt[-4]))  y_real.append(y(x[-1]))  err_list.append(y_real[-1] - y_pdt[-1])  return x, y_pdt, y_real, err_list  # 改进的AB4_AM4预测算法  
def plus_ab4_am4(y0, h_, x0, xi):  N = int((xi - x0) / h_)  # 运算的次数  x, y_pdt, y_real, err_list = rk4(y0, h_, x0, x0 + 3 * h_) # y0给定 y1,y2,y3由RK4得出  for i in range(3, N):  y_pdt.append(y_pdt[-1] + h_ / 24 * \  (55 * y_fxy(x[-1], y_pdt[-1]) - 59 * y_fxy(x[-2], y_pdt[-2]) + \  37 * y_fxy(x[-3], y_pdt[-3]) - 9 * y_fxy(x[-4], y_pdt[-4])))  x.append(x[-1] + h_)  y_c = y_pdt[-2] + h_ / 24 * \  (9 * y_fxy(x[-1], y_pdt[-1]) + 19 * y_fxy(x[-2], y_pdt[-2]) - \  5 * y_fxy(x[-3], y_pdt[-3]) + y_fxy(x[-4], y_pdt[-4]))  y_pdt[-1] = 251 / 270 * y_c + 19 / 270 * y_pdt[-1]  y_real.append(y(x[-1]))  err_list.append(y_real[-1] - y_pdt[-1])  return x, y_pdt, y_real, err_list  def display(x, y_pdt, y_real, err_list, h_, x0, xi):  N = int((xi - x0) / h_)  # 运算的次数  print("i  xi      yi        y(xi)    y(xi)-yi")  for i in range(N):  print("{:d} {:.2f} {:.8f} {:.8f} {:.8f}".format\  (i+1, x[i+1], y_pdt[i+1], y_real[i+1], err_list[i+1]))  if __name__ == '__main__':  y_0 = 3  # 初值  h = 0.1  # 步长  x_0 = 0  # 区间左端点  x_i = 1.5  # 区间右端点  X, Y_pdt, Y_real, Error = rk4(y_0, h, x_0, x_i)  print("RK4:")  display(X, Y_pdt, Y_real, Error, h, x_0, x_i)  print("RK4整体截断误差:{:.8f}".format(max(list(map(abs, Error)))))  X, Y_pdt, Y_real, Error = ab4(y_0, h, x_0, x_i)  print("AB4:")  display(X, Y_pdt, Y_real, Error, h, x_0, x_i)  print("AB4整体截断误差:{:.8f}".format(max(list(map(abs, Error)))))  X, Y_pdt, Y_real, Error = ab4_am4(y_0, h, x_0, x_i)  print("AB4-AM4预测校正:")  display(X, Y_pdt, Y_real, Error, h, x_0, x_i)  print("AB4-AM4预测矫正整体截断误差:{:.8f}".format(max(list(map(abs, Error)))))  X, Y_pdt, Y_real, Error = plus_ab4_am4(y_0, h, x_0, x_i)  print("改进的AB4-AM4预测校正:")  display(X, Y_pdt, Y_real, Error, h, x_0, x_i)  print("改进的AB4-AM4预测矫正整体截断误差:{:.8f}".format(max(list(map(abs, Error)))))

6.3 程序运行结果

RK4:

RK4:
i  xi      yi        y(xi)    y(xi)-yi
1 0.10 2.99700281 2.99700300 0.00000019
2 0.20 2.97619008 2.97619048 0.00000039
3 0.30 2.92112875 2.92112950 0.00000076
4 0.40 2.81954726 2.81954887 0.00000161
5 0.50 2.66666349 2.66666667 0.00000318
6 0.60 2.46710026 2.46710526 0.00000501
7 0.70 2.23379914 2.23380491 0.00000577
8 0.80 1.98412285 1.98412698 0.00000413
9 0.90 1.73510711 1.73510700 -0.00000012
10 1.00 1.50000581 1.50000000 -0.00000581
11 1.10 1.28701259 1.28700129 -0.00001131
12 1.20 1.09972217 1.09970674 -0.00001542
13 1.30 0.93839746 0.93837973 -0.00001773
14 1.40 0.80130043 0.80128205 -0.00001838
15 1.50 0.68573209 0.68571429 -0.00001780
RK4整体截断误差:0.00001838

AB4:

AB4:
i  xi      yi        y(xi)    y(xi)-yi
1 0.10 2.99700281 2.99700300 0.00000019
2 0.20 2.97619008 2.97619048 0.00000039
3 0.30 2.92112875 2.92112950 0.00000076
4 0.40 2.81838926 2.81954887 0.00115961
5 0.50 2.66467247 2.66666667 0.00199420
6 0.60 2.46520263 2.46710526 0.00190263
7 0.70 2.23307895 2.23380491 0.00072596
8 0.80 1.98495058 1.98412698 -0.00082359
9 0.90 1.73704329 1.73510700 -0.00193629
10 1.00 1.50219455 1.50000000 -0.00219455
11 1.10 1.28876344 1.28700129 -0.00176216
12 1.20 1.10072420 1.09970674 -0.00101746
13 1.30 0.93871050 0.93837973 -0.00033077
14 1.40 0.80113495 0.80128205 0.00014710
15 1.50 0.68533458 0.68571429 0.00037971
AB4整体截断误差:0.00219455

AB4-AM4预测校正:

AB4-AM4预测校正:
i  xi      yi        y(xi)    y(xi)-yi
1 0.10 2.99700281 2.99700300 0.00000019
2 0.20 2.97619008 2.97619048 0.00000039
3 0.30 2.92112875 2.92112950 0.00000076
4 0.40 2.81967843 2.81954887 -0.00012956
5 0.50 2.66687598 2.66666667 -0.00020932
6 0.60 2.46725176 2.46710526 -0.00014650
7 0.70 2.23373141 2.23380491 0.00007350
8 0.80 1.98378670 1.98412698 0.00034028
9 0.90 1.73460744 1.73510700 0.00049956
10 1.00 1.49951594 1.50000000 0.00048406
11 1.10 1.28665714 1.28700129 0.00034415
12 1.20 1.09953315 1.09970674 0.00017360
13 1.30 0.93834252 0.93837973 0.00003721
14 1.40 0.80132737 0.80128205 -0.00004532
15 1.50 0.68579611 0.68571429 -0.00008183
AB4-AM4预测校正整体截断误差:0.00049956

改进的AB4-AM4预测校正:

改进的AB4-AM4预测校正:
i  xi      yi        y(xi)    y(xi)-yi
1 0.10 2.99700281 2.99700300 0.00000019
2 0.20 2.97619008 2.97619048 0.00000039
3 0.30 2.92112875 2.92112950 0.00000076
4 0.40 2.81958771 2.81954887 -0.00003884
5 0.50 2.66671285 2.66666667 -0.00004619
6 0.60 2.46709703 2.46710526 0.00000823
7 0.70 2.23368249 2.23380491 0.00012242
8 0.80 1.98388468 1.98412698 0.00024230
9 0.90 1.73480801 1.73510700 0.00029899
10 1.00 1.49973191 1.50000000 0.00026809
11 1.10 1.28682068 1.28700129 0.00018061
12 1.20 1.09962178 1.09970674 0.00008496
13 1.30 0.93836732 0.93837973 0.00001242
14 1.40 0.80131135 0.80128205 -0.00002930
15 1.50 0.68576045 0.68571429 -0.00004616
改进的AB4-AM4预测校正整体截断误差:0.00029899

6.4 总结感悟

  • 根据数值分析理论推导的结果,RK4、AB4、AB4-AM4预测校正具有4阶精度,而改进的AB4-AM4预测校正具有5阶精度,但是对于该问题来说,比较四种常微分方程数值解法在 [ 0.1 , 1.5 ] [0.1,1.5] [0.1,1.5]上的整体截断误差,则是RK4<改进的AB4-AM4预测校正<AB4-AM4预测校正<AB4,RK4(单步法)的精度要比多步法(AB4、AB4-AM4预测校正、改进的AB4-AM4预测校正)的精度更高;
  • 要根据不同的问题选择合适的数值解法,公式的精度越高不代表实际的求解精度越高;
  • 常微分方程的数值解法是广泛应用的方法,在以后的工程实践与科研之中会有更多的应用.

这篇关于东南大学研究生-数值分析上机题(2023)Python 6 常微分方程数值解法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1130375

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详