搭建大型分布式服务(四十四)SpringBoot 无代码侵入实现多Kafka数据源:单分区提升至十万级消费速度!

本文主要是介绍搭建大型分布式服务(四十四)SpringBoot 无代码侵入实现多Kafka数据源:单分区提升至十万级消费速度!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列文章目录


文章目录

  • 系列文章目录
  • 前言
      • 一、本文要点
      • 二、开发环境
      • 三、原项目
      • 四、修改项目
      • 五、测试一下
      • 五、小结


前言

在过去的一段时间里,我们利用了AI大模型写了一个多线程并发框架,那么,我们怎样集成到Kafka组件里,让消费速度提升N倍呢?

  • 《AI大模型编写多线程并发框架(六十一):从零开始搭建框架》
  • 《AI大模型编写多线程并发框架(六十二):限流和并发度优化》
  • 《AI大模型编写多线程并发框架(六十三):监听器优化·上》
  • 《AI大模型编写多线程并发框架(六十四):监听器优化·下》
  • 《AI大模型编写多线程并发框架(六十五):发布和应用》

国籍惯例,先上源码:Github源码

一、本文要点

本文将介绍通过封装一个starter,来实现多kafka数据源的配置,通过通过源码,可以学习以下特性。系列文章完整目录

  • SpringBoot 整合多个kafka数据源
  • SpringBoot 批量消费kafka消息
  • SpringBoot 优雅地启动或停止消费kafka
  • SpringBoot kafka本地单元测试(免集群)
  • SpringBoot 利用map注入多份配置
  • SpringBoot BeanPostProcessor 后置处理器使用方式
  • SpringBoot 将自定义类注册到IOC容器
  • SpringBoot 注入bean到自定义类成员变量
  • Springboot 取消限定符
  • SpringBoot 支持消费protobuf类型的kafka消息
  • SpringBoot Aware设计模式
  • SpringBoot 获取kafka消息中的topic、offset、partition、header等参数
  • SpringBoot 使用任意生产者发送kafka消息
  • SpringBoot 配置任意数量的kafka生产者
  • SpringBoot Kafka单次batch消息内并发处理

二、开发环境

  • jdk 1.8
  • maven 3.6.2
  • springboot 2.4.3
  • kafka-client 2.6.6
  • idea 2020
  • mmc-juc 1.1

三、原项目

1、接前文,我们已经发布了Kafka组件到中央仓库,所有开发者都可以下载使用本组件。虽然本组件支持批量消费Kafka消息,但是毕竟它是串行顺序处理的,尤其涉及高IO耗时调用时,比如消费Kafka,然后读写DB多表操作这种场景,会使消费速度下降。能否并发处理这些Kafka消息呢?

答案是可以的、但我们要升级和优化一下。

四、修改项目

1、新增ContainerConfig接口类,用于获取多线程任务容器配置,便于后续使用Apollo、Disconf、Consul等配置中心。

public interface ContainerConfig {/*** Get the execute rate.** @return rate*/int getRate();/*** Get the max task count for per thread.** @return max count*/int getThreshold();/*** The max thread count, default is numbers of processor.* @return count*/default int getParallelism() {return Runtime.getRuntime().availableProcessors();}
}

2、修改MmcMultiKafkaProperties配置类,增加容器配置;

@ToString
@Data
@ConfigurationProperties(prefix = "spring")
public class MmcMultiKafkaProperties {// 省略其他代码/*** MmcKafkaProperties.*/@Datastatic class MmcKafkaProperties {// 省略其他代码/*** 并发设置.*/private Container container = new Container();}@Datapublic static class Container implements ContainerConfig {/*** 是否启用多线程消费.*/private boolean enabled = true;/** 消费消息的速率(每秒接收的记录数),默认值为1000.*/private int rate = 1000;/** 最小批次数量,默认为2.*/private int threshold = 2;/** 设置并行度,默认值为可用处理器数量.*/private int parallelism = Runtime.getRuntime().availableProcessors();}
}

3、修改MmcMultiConsumerAutoConfiguration配置类,主要是增加inputer的初始化方法,用于后续构建多线程任务容器实例。


public interface MmcInputer {// 省略其他代码/*** 初始化kafka容器.*/void init();
}@Slf4j
@Configuration
@EnableConfigurationProperties(MmcMultiKafkaProperties.class)
@ConditionalOnProperty(prefix = "spring.kafka", value = "enabled", matchIfMissing = true)
public class MmcMultiConsumerAutoConfiguration extends BaseConsumerConfiguration {// 省略其他代码@Beanpublic MmcKafkaInputerContainer mmcKafkaInputerContainer(MmcKafkaProcessorFactory factory,MmcKafkaBeanPostProcessor beanPostProcessor) throws Exception {// 省略其他代码// 逐个遍历,并生成consumerfor (Map.Entry<String, MmcMultiKafkaProperties.MmcKafkaProperties> entry : kafkas.entrySet()) {// 省略其他代码// 是否开启if (properties.isEnabled() && CommonUtil.isNotBlank(properties.getGroupId())) {// 省略其他代码// 设置容器inputer.setContainer(container);inputer.setName(name);inputer.setProperties(properties);inputer.init(); // 增加初始化// 省略其他代码}}return new MmcKafkaInputerContainer(inputers);}
}

4、由于增加了inputer增加了init方法,所以超级父类KafkaAbstractProcessor也增加一个默认实现。

@Slf4j
@Setter
public abstract class KafkaAbstractProcessor<T> implements MmcInputer {// 省略其他代码@Overridepublic void init() {}
}

5、新增MmcKafkaParallelAbstractProcessor并发处理类,根据多线程并发框架mmc-juc的特性,配置初始化多线程任务容器,并保留很多回调函数,方便子类覆盖重写。


@Slf4j
@Setter
public abstract class MmcKafkaParallelAbstractProcessor<T, R> extends MmcKafkaAbstractProcessor<T> {/*** taskExecutor.*/protected MmcTaskExecutor<T, R> taskExecutor;/*** init.*/public void init() {ContainerConfig config = properties.getContainer();this.taskExecutor = MmcTaskExecutor.<T, R>builder().taskProcessor(this::handelBatchDatas).threshold(config.getThreshold()).rateLimiter(buildRateLimiter(config.getRate())).taskMerger(this::mergeResult).forkJoinPoolConcurrency(config.getParallelism()).build();}@Overrideprotected void dealMessage(List<T> datas) throws ExecutionException, InterruptedException {if (properties.getContainer().isEnabled()) {// 开启并发处理R result = taskExecutor.execute(MmcTask.<T, R>builder().taskSource(datas).taskName(getTaskName(datas)).build());dealMessageCallBack(result);} else {// 同步处理R result = handelBatchDatas(datas);dealMessageCallBack(result);}}/*** 合并小任务结果(默认不合并).** @param left 左边处理结果* @param right 右边处理结果* @return 合并后的结果*/protected R mergeResult(R left, R right) {return null;}/*** 构建速率限制器.** @param rate qps* @return 速率限制器*/protected RateLimiter buildRateLimiter(int rate) {return new TokenBucket(rate, rate);}/*** 当所有消息处理完后,会调用该方法.** @param result 处理结果*/protected void dealMessageCallBack(R result) {// default null}/*** 获取任务名称.*/protected String getTaskName(List<T> datas) {return name;}/*** 真正处理消息的方法.** @param datas 待处理消息* @return 小任务处理完的结果*/protected abstract R handelBatchDatas(List<T> datas);}

五、测试一下

1、引入mmc-juc需要的jar。参考文章:kafka单元测试

       <dependency><groupId>io.github.vipjoey</groupId><artifactId>mmc-juc</artifactId><version>1.1</version></dependency>

2、增加并发消费者配置,生产者配置不变。

## json消息消费者
spring.kafka.five.enabled=true
spring.kafka.five.consumer.bootstrapServers=${spring.embedded.kafka.brokers}
spring.kafka.five.topic=mmc-topic-five
spring.kafka.five.group-id=group-consumer-five
spring.kafka.five.processor=fiveProcessor
spring.kafka.five.duplicate=true
spring.kafka.five.snakeCase=false
spring.kafka.five.consumer.auto-offset-reset=latest
spring.kafka.five.consumer.max-poll-records=10
spring.kafka.five.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.five.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
## 并发配置
spring.kafka.five.container.threshold=2
spring.kafka.five.container.rate=1000
spring.kafka.five.container.parallelism=8## json消息生产者
spring.kafka.five.enabled=true
spring.kafka.five.producer.name=fiveKafkaSender
spring.kafka.five.producer.bootstrap-servers=${spring.embedded.kafka.brokers}
spring.kafka.five.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.five.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer

3、编写测试类。


@Slf4j
@Service("fiveProcessor")
public class FiveProcessor extends MmcKafkaParallelAbstractProcessor<ParalleMsg, Void> {@Overrideprotected Void handelBatchDatas(List<ParalleMsg> datas) {datas.forEach(x -> {log.info("handelBatchDatas one: {}", x);});return null;}
}@Slf4j
@ActiveProfiles("dev")
@ExtendWith(SpringExtension.class)
@SpringBootTest(classes = {MmcMultiProducerAutoConfiguration.class, MmcMultiConsumerAutoConfiguration.class,FiveProcessor.class})
@TestPropertySource(value = "classpath:application-paralle.properties")
@DirtiesContext
@EmbeddedKafka(partitions = 1, brokerProperties = {"listeners=PLAINTEXT://localhost:9092", "port=9092"},topics = {"${spring.kafka.five.topic}"})
public class KafkaParalleMessageTest {@Value("${spring.kafka.five.topic}")private String fiveTopic;@Resource(name = "fiveKafkaSender")private MmcKafkaSender mmcKafkaSender;@Testvoid testDealMessage() throws Exception {Thread.sleep(2 * 1000);// 模拟生产数据produceMessage();Thread.sleep(10 * 1000);}void produceMessage() {for (int i = 0; i < 10; i++) {DemoMsg msg = new DemoMsg();msg.setRoutekey("routekey" + i);msg.setName("name" + i);msg.setTimestamp(System.currentTimeMillis());String json = JsonUtil.toJsonStr(msg);mmcKafkaSender.sendStringMessage(fiveTopic, "aaa", json);}}
}

5、运行一下,测试通过,可以看到能正常发送消息和消费。
在这里插入图片描述

五、小结

将本项目代码构建成starter,就可以大大提升我们开发效率,我们只需要关心业务代码的开发,github项目源码:轻触这里。如果对你有用可以打个星星哦。

  • 《搭建大型分布式服务(三十六)SpringBoot 零代码方式整合多个kafka数据源》
  • 《搭建大型分布式服务(三十七)SpringBoot 整合多个kafka数据源-取消限定符》
  • 《搭建大型分布式服务(三十八)SpringBoot 整合多个kafka数据源-支持protobuf》
  • 《搭建大型分布式服务(三十九)SpringBoot 整合多个kafka数据源-支持Aware模式》
  • 《搭建大型分布式服务(四十)SpringBoot 整合多个kafka数据源-支持生产者》
  • 《搭建大型分布式服务(四十一)SpringBoot 整合多个kafka数据源-支持亿级消息生产者》
  • 《搭建大型分布式服务(四十二)SpringBoot 无代码侵入实现多Kafka数据源整合插件发布》
  • 《搭建大型分布式服务(四十三)SpringBoot 多Kafka数据源发布到Maven中央仓库:让世界看到你的作品!》
  • 《搭建大型分布式服务(四十四)SpringBoot 无代码侵入实现多Kafka数据源:单分区提升至十万级消费速度!》

加我加群一起交流学习!更多干货下载、项目源码和大厂内推等着你

这篇关于搭建大型分布式服务(四十四)SpringBoot 无代码侵入实现多Kafka数据源:单分区提升至十万级消费速度!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129883

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Kafka拦截器的神奇操作方法

《Kafka拦截器的神奇操作方法》Kafka拦截器是一种强大的机制,用于在消息发送和接收过程中插入自定义逻辑,它们可以用于消息定制、日志记录、监控、业务逻辑集成、性能统计和异常处理等,本文介绍Kafk... 目录前言拦截器的基本概念Kafka 拦截器的定义和基本原理:拦截器是 Kafka 消息传递的不可或缺

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一