快速排序改进优化

2024-09-02 11:48
文章标签 优化 快速 排序 改进

本文主要是介绍快速排序改进优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

以前写的快速排序,基本上按下面伪代码这个套路写出来就完了,但其实对于快排,可以通过很多方面来进行改进以达到更好的效率。

algorithm quicksort(A, lo, hi) isif lo < hi thenp := partition(A, lo, hi)quicksort(A, lo, p)quicksort(A, p + 1, hi)algorithm partition(A, lo, hi) ispivot := A[lo]i := lo - 1j := hi + 1loop foreverdoi := i + 1while A[i] < pivotdoj := j - 1while A[j] > pivotif i >= j thenreturn jswap A[i] with A[j]

快排模拟
先回顾一下上面快排的模拟图
分析:

  • 首先,清楚快排原理的同志都知道,快排特别热衷于凌乱的数据,最好情况下时间复杂度能达到O(nlogn),空间复杂度为O(logn);但是对于基本有序或者倒序的数据则无能为力,时间复杂度直接降到O(n^2),空间复杂度为O( n ) 。对于这种情况,取一个合理的基准值就很重要了。
    一种较为稳妥的方法是随机选取数组中的某个位置,而不是总是顽固地选择最右端的元素,这样确实可以避免排序的退化。
    再回想我们为什么要取随机值?就是为了避免输入数据有序造成的异常,如果一种方法能够在这种情况下利用这种原有的有序性岂不是更好吗?三值取中法就是这样的方法,它的选取方法是先从数组的开头、结尾和中间选取3个元素,再取这3个元素的中间值作为划分的基准。首先,三值取中法本身带有一定的随机性,所以能够很好的处理随机数据;其次,它使得最坏情况几乎不可能发生,如果数组原本就具有有序性,那么按照原始的划分方法,取到的3个元素中必然有2个将被划分到大于(或小于)v的值所在的数组中,而三值取中法则扭转了这种不利;最后,与随机化方法相比,三值取中法省去了生成随机数的开销。
  • 其次,在快速排序算法的递归实现中,存在一种不太好的现象:随着递归层层深入,大量数据被分割成了小数组;快排对于大数组的划分可以迅速地将元素移动到它正确位置的附近,比如说对1024进行一次均等划分,那么某个元素可能会移动数百个单位位置,若进行4次均等划分,元素在正确位置上的概率就从1/1024骤升到1/64,考虑到64与1024的绝对数值,这是相当高的效率;然而对于小数组,快速排序的效率就不那么理想了,对于16个元素的数组,快速排序也要划分4次才能把它移动到正确的位置上,相对于之前几百个位置的移动,小数组排序一次只能移动几个单位的位置。
    换句话说,快速排序对少量数据的划分远不如它对大量数据的划分这么划算,当排序进入到小数组阶段后,它将多次因为这些小数组而频繁调用自身,但获得的收益并不大,我姑且把这种现象叫做小数组的边际效益。采取分治递归策略的排序算法(如归并排序)都存在同样的问题,所以这类排序都可以在这方面优化。对大量数据排序时,我们应该在前期利用快速排序的特点,让这些数据迅速移动到正确位置附近,然后在后期消除小数组的边际效应。
    消除边际效应的一个方法就是设定一个M值,当数组元素个数小于M时,视为小数组,此时快速排序就直接返回,最后把数组处理得差不多时,再用其它排序方法对数组进行最终排序。那么M值应该取多少?又应该选择何种排序算法进行最终排序?
    首先回答第二个问题,因为它的答案是显而易见的。对接近有序的数据排序,没有什么算法比插入排序更合适了,插入排序的执行开销与所有元素偏离自己正确位置的距离成正比。

最后看一下结合上面两种改进方法写出来的快排:

package sort;public class QuickSortDemo2 {private static void print(long[] a) {System.out.print("a : ");for (int i = 0; i < a.length; i++) {System.out.print(a[i] + " ");}System.out.println();}private static void quickSort(long[] a, int left, int right) {
//      if(right<=left){
//          return;
//      }//当数组长度比较短并且基本有序时,使用插入排序会有比较好的效率提升if (right - left + 1 <= 10) {insertSort(a, left, right);} else {//取left和right的中间值,有两个好处:1、防止对于基本有序的数组进行多余无效的交换;2、能够很巧妙的为数组越界作参考标准long median = getMedian(a, left, right);int partition = partitionInt(a, left, right, median);quickSort(a, left, partition-1);quickSort(a, partition+1, right);}}private static int partitionInt(long[] a, int left, int right, long median) {int leftPtr = left;int rightPtr = right - 1;while (true) {while (a[++leftPtr] < median)   //因为median取的是left、right和center的中间值,所以仅通过一句判断很巧妙的实现了数组越界的判断;while (a[--rightPtr] > median)  //同上;if(leftPtr >= rightPtr){break;}swap(a,leftPtr,rightPtr);}swap(a, leftPtr, right-1);return leftPtr;}private static long getMedian(long[] a, int left, int right) {int center = (left + right) / 2;if (a[left] > a[center]) {swap(a, left, center);}if (a[left] > a[right]) {swap(a, left, right);}if (a[center] > a[right]) {swap(a, center, right);}swap(a, center, right - 1); //将中值放到right-1位置,后面的比较替换只针对left+1~right-2return a[right - 1];}private static void insertSort(long[] a, int left, int right) {int in, out;for (out = left + 1; out <= right; out++) {in = out;long temp = a[out];while (in > left && a[in - 1] > temp) {a[in] = a[in - 1];--in;}a[in] = temp;}}private static void swap(long[] a, int i, int j) {long temp = a[i];a[i] = a[j];a[j] = temp;}public static void main(String[] args) {long[] a = new long[10000];for (int i = 0; i < a.length; i++) {a[i] = (long) (Math.random() * 99);}print(a);long startTime = System.currentTimeMillis();quickSort(a, 0, a.length - 1);long endTime = System.currentTimeMillis();System.out.println("use: " + (endTime - startTime) + "ms");print(a);}}

github:
https://github.com/aweneves/Algorithm1/blob/master/src/sort/QuickSortDemo2.java

这篇关于快速排序改进优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129869

相关文章

Python中lambda排序的六种方法

《Python中lambda排序的六种方法》本文主要介绍了Python中使用lambda函数进行排序的六种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录1.对单个变量进行排序2. 对多个变量进行排序3. 降序排列4. 单独降序1.对单个变量进行排序

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传