yolo8 目标检测、鉴黄

2024-09-02 04:52
文章标签 目标 检测 鉴黄 yolo8

本文主要是介绍yolo8 目标检测、鉴黄,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

省流 看前必读 别浪费时间 :本文只是一个记录,防止自己下次被改需求时浪费时间,在这里就随意的写了一下文章记录整个步骤,但是文章想必肯定没有对应的教程讲的详细,该文章只适合想要快速按照步骤完成一个简单的 demo 的同学,并不适合想完全掌握 yolo 的同学。

一、安装环境

前言预览:

  • 环境的安装分为 anacondapytorchultralytics
  • pytorch安装需要注意自己的显卡版本选择对应的,30、40 系显卡要装 cuda 11版本,16 系显卡安装cuda 102版本(本文没有进行说明,可以搜搜找到适合自己显卡的版本,若是40系显卡跟着我步骤就ok)
  • 注意python版本不在3.8-3.11之间则会报错(以下会有一个解决办法)

1.1 anaconda

在此建议使用Anaconda,不然本地环境配了还要换,贼麻烦,Anaconda真香,我以前是懒得用的,结果现在真香。

首先安装 Anaconda,安装完毕后直接打开,简单吧,咱们 winer 就是喜欢可视化,low 也认了,我懒。

打开后如下,然后找到 create 创建当前项目的环境:
在这里插入图片描述
给予python对应版本号,记得有些版本不支持,我忘记了,就按照这个来吧,你可以自己搜一下会比较清楚:
在这里插入图片描述

1.2 pytorch

接着开始装 pytorch,地址:https://pytorch.org/get-started/locally/

截图如下:

在这里插入图片描述

安装一些老版本会比较兼容稳定,不然太新会寄,这个我就不过多解释了,做开发的都懂:

在这里插入图片描述

对了,这里对你的显卡啥的有版本要求,找到适合你的,我是 4060 ti ,选择了适合的版本(你可以搜,我忘记了,这篇文章就是临时做了一个小项目,顺手做个笔记,防止下次叫我改需求啥啥啥的):
这里我选择的是 cuda 11.8:
https://pytorch.org/get-started/previous-versions/

在这里插入图片描述

接着通过 conda 打开你的命令提示窗,就是 open Terminal:

在这里插入图片描述

输入以下命令:

conda install pytorch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 pytorch-cuda=11.8 -c pytorch -c nvidia

复制命令,enter执行:

在这里插入图片描述
在这里插入图片描述

1.2 ultralytics

yyyyy… 后,然后安装 ultralytics:

pip install ultralytics

注意,在这几步注意你的网络,你是否设置了全局镜像源,不清楚的就切换网络试试,说不定就成了。

随后到 github 的 ultralytics 中下载那个文件,我这里直接下载了压缩包:

进入 ultralytics 解压后的文件夹 -e. 安装,注意,使用 cd 进入目录,不会的搜搜 cd 命令是干啥的用的,就是 cd 后面一个目录就进去了,进不去注意切换盘符,例如默认C盘,你进入了D盘你cd后还需要 d: 才可以(建议学学不然说不明白,从基础说起来又太多了,这里就给小白玩家一个提示。):

pip install -e .

随后就开始安装:
在这里插入图片描述

1.4 有报错的注意

若python版本不在3.8-3.11之间则会报错,找不到指定的模块:\site-packages\torch\lib\fbgemm.dll
在这里插入图片描述
解决办法:将python版本换回

在运行此命令之前尝试执行conda clean --all此操作,否则可能有缓存的原因会导致你安装不了:
在这里插入图片描述
安装完毕后,可以使用 yolo 命令,看看能不能用:

yolo predict model=yolov8n.pt source=ultralytics/assets/bus.jpg

以上命令是 yolo 就是表示使用 yolo ,你可以这样理解,随后 predict 表示预测,连起来就是使用 yolo 预测,model 表示选择模型是 yolov8n.pt 就是后缀就不用理了,source 表示预测的那个图片位置,在这里选择的目录是 ultralytics/assets/ 下的 bus.jpg 文件,随后会直接进行人像的预测。

简而言之:

yolo predict model=模型选择 source=你要预测的图片

1.5 代码预测方式如下:

代码:

from ultralytics import YOLOyolo=YOLO("./yolov8n.pt",task="detect")
res=yolo(source="./ultralytics/assets/bus.jpg")

代码执行:
在这里插入图片描述

二、在线标注网站

2.1 导入文件

咱们在这里使用在线的标注网站,轻松方便直接标注直接使用。
打开标注网站 :
https://www.makesense.ai/

直接选择 start 开始:

在这里插入图片描述
把你的图片拖进来,我这里拖了51张图片:

在这里插入图片描述
选择目标检测 object detection:
在这里插入图片描述

2.2 label 标注

随后的界面会说你的当前 label 标签是空的:
在这里插入图片描述
点击中间创建 标签:

在这里插入图片描述
点击 + 号可以添加标签,我这里直接添加 A 和 B 标签:
在这里插入图片描述
之后点击接受即可:
在这里插入图片描述
唔然后我发现改版了这个网站,以前直接是个十字架你直接画框就好,现在要自己选,选择画框,有可能你不需要选也得:在这里插入图片描述
然后鼠标放到你图片上画个框,就是你需要检测的对象长啥样,你就把他框出来(由于我图片敏感就不做演示,如果你要检测人你就框人,检测某一个特定logo你就框那个 logo):
在这里插入图片描述
框了后在这里选择你框出来的目标的分类:
在这里插入图片描述
有可能我这里标签是男人、女人,那么我这里框出来男人就选择标签为男人的选项,我这里就用A、B表示了。

随后在左上角 Action 操作中选择导出:
在这里插入图片描述
随后弹出来后选择 yolo 格式的 zip 文件,这个看你自己,我是需要 zip 的,txt 格式的文件:
在这里插入图片描述
随后导出后,会下载一个压缩包,解压后里面有 txt 的文件:

在这里插入图片描述

三、模型训练代

进行模型训练和预测我们需要准备好对应的目录以及标注文件,例如 dataset目录,在 dataset目录下创建对应的图片 train 训练文件夹以及验证文件夹 val。当然 dataset 目录下是分不同项目的,不同项目不同文件夹,在这里我用 gjf 表示我的项目名,在 gif 下创建对应的训练目录以及验证目录(继续往下看吧)。

3.1 目录和文件准备

训练前准备,在 yolo 根目录创建一个 dataset:
在这里插入图片描述

打开文件目录,在 datasets 下创建一个 gif,你可以认为 gif 为当前项目的数据集名称,毕竟需要创建不同的名称为数据集分类。

接着 在 gif下创建一个 images 文件夹,用于存放对应的图片数据集,但我们的图片数据集分为训练和验证,再次两个种类分别创建两个目录,一个为 train 用于训练,另一个叫做 val 用于验证。

接着我们需要再创建一个 label 文件夹用于存放对应的标注文件:

在这里插入图片描述
同样,对应的label 有用于训练的以及用于验证的,那么此时在labels 文件夹下创建两个对应的 train 和 val 文件夹:
在这里插入图片描述

此时我们回到存放image 文件夹下,在 train 文件下把我们拿来标注的图片复制过来:
在这里插入图片描述
接着我们选取几张图片进行剪切存放到 val 文件夹下:
在这里插入图片描述
在此我选择6张图片剪贴到 val下:

在这里插入图片描述
随后打开标注文件下的 train 中;
在这里插入图片描述
复制之前下载的标注内容到此文件夹:
在这里插入图片描述

此时你还记得,之前剪切到 val 中的 image 图片吗?我是 6、7、8、66、67、68 这 6 个文件,此时将他们的数据在 labels 下的 train 文件夹中进行剪切,复制到 labels 下的 val 文件夹中,因为我们要做到 labels 于 images 文件夹下的文件一一对应,这是原因:

在这里插入图片描述
此时还差最后一步,我们回到 labels 文件夹下创建一个 classes.txt 文件:

在这里插入图片描述

此文件是说明咱们训练的内容分为几个类别,在此我是两个类别,其中内容为(这里要跟你标注的标签一致,我之前使用 A、B做标签的,所以在这里应该是A、B,这是以前的项目所以就没发改了,就这样了,你理解就ok):
在这里插入图片描述
这个类型请按照你自己的进行自定义。

3.2 配置项

接下来开始做训练前的最后一步,创建我们 gjf 项目的配置文件,在根目录下创建一个 .yaml 文件,当然你可以自命名,我是命名为了 gif,这个文件是配置作用:

在这里插入图片描述
其中编写如下配置信息:
在这里插入图片描述

XML 如下:

path: gjf # datasets 下的哪个项目
train: images/train # 训练图片在哪
val: images/val # 验证目录在哪
test: # test images (optional)# Classes
names:0: GJF1: SQ

随后执行命令:yolo task=detect model=./yolov8n.pt data=gjf.yaml epochs=25 workers=1 batch=16

若出现文件找不到之类的问题或者模型找不到,请使用绝对路径,那样可以暂时解决你的错误,但是你还需要自己调整一下当前你的系统环境,这是另外的问题在此就不再多说,查资料就ok。

解决执行完毕后,顺利无误将会出现以下结果:
在这里插入图片描述

此时结果告诉我保留咋爱了某个目录下的 runs\detect… 中,best.pt 是最好的模型结果,那我们使用 best.pt 检测一下我们目标识别效果如何:

yolo detect predict model= runs/... source= ..... show=true

以上命令记得把哪个 … 啥的 路径 改成你自己的目录

3.3 代码检测某一图片是否有目标

接着我们使用代码运行查看结果 :

import cv2
from ultralytics import YOLO# 加载训练好的模型
model = YOLO("path_to_your_trained_model.pt")
# 读取图片
image_path = "path_to_your_image.jpg"
img = cv2.imread(image_path)
# 进行检测
results = model.predict(source=img, save=False)if len(results[0].boxes) > 0:print("有")
else:print("没有")

结果如下:
在这里插入图片描述

这篇关于yolo8 目标检测、鉴黄的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129043

相关文章

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

[数据集][目标检测]血细胞检测数据集VOC+YOLO格式2757张4类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2757 标注数量(xml文件个数):2757 标注数量(txt文件个数):2757 标注类别数:4 标注类别名称:["Platelets","RBC","WBC","sickle cell"] 每个类别标注的框数:

Temu官方宣导务必将所有的点位材料进行检测-RSL资质检测

关于饰品类产品合规问题宣导: 产品法规RSL要求 RSL测试是根据REACH法规及附录17的要求进行测试。REACH法规是欧洲一项重要的法规,其中包含许多对化学物质进行限制的规定和高度关注物质。 为了确保珠宝首饰的安全性,欧盟REACH法规规定,珠宝首饰上架各大电商平台前必须进行RSLReport(欧盟禁限用化学物质检测报告)资质认证,以确保产品不含对人体有害的化学物质。 RSL-铅,

YOLOv8/v10+DeepSORT多目标车辆跟踪(车辆检测/跟踪/车辆计数/测速/禁停区域/绘制进出线/绘制禁停区域/车道车辆统计)

01:YOLOv8 + DeepSort 车辆跟踪 该项目利用YOLOv8作为目标检测模型,DeepSort用于多目标跟踪。YOLOv8负责从视频帧中检测出车辆的位置,而DeepSort则负责关联这些检测结果,从而实现车辆的持续跟踪。这种组合使得系统能够在视频流中准确地识别并跟随特定车辆。 02:YOLOv8 + DeepSort 车辆跟踪 + 任意绘制进出线 在此基础上增加了用户

独立按键单击检测(延时消抖+定时器扫描)

目录 独立按键简介 按键抖动 模块接线 延时消抖 Key.h Key.c 定时器扫描按键代码 Key.h Key.c main.c 思考  MultiButton按键驱动 独立按键简介 ​ 轻触按键相当于一种电子开关,按下时开关接通,松开时开关断开,实现原理是通过轻触按键内部的金属弹片受力弹动来实现接通与断开。  ​ 按键抖动 由于按键内部使用的是机

基于stm32的河流检测系统-单片机毕业设计

文章目录 前言资料获取设计介绍功能介绍具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机设计精品