大数据-Hadoop-MapReduce(二):MapReduce编程案例

2024-09-02 03:48

本文主要是介绍大数据-Hadoop-MapReduce(二):MapReduce编程案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

案例:使用MapReduce进行词频统计

1、读取本地数据,使用本地(Windows中的hadoop)计算资源,计算结果保存到本地

在这里插入图片描述

WCMapper.java

package com.wyr.wordcount;import java.io.IOException;
import java.util.List;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.RecordReader;/*** 注意:导包时,导入 org.apache.hadoop.mapreduce包下的类(2.0的新api)* * 1. 自定义的类必须符合 MapperReduce 的Mapper的规范* * 2.在MapperReduce中,只能处理 key-value格式的数据* 	 KEYIN, VALUEIN: mapper输入的k-v类型。 由当前Job的 InputFormat 的 RecordReader决定!封装输入的 key-value 由 RecordReader 自动进行。*   KEYOUT, VALUEOUT: mapper输出的k-v类型: 自定义*   * 3. InputFormat的作用:*  		①验证输入目录中文件格式,是否符合当前Job的要求*  		②生成切片,每个切片都会交给一个MapTask处理;方法: List<InputSplit> getSplits*  		③创建RecordReader,由RecordReader从切片中读取记录,交给Mapper进行处理;方法:RecordReader<K,V> createRecordReader;默认hadoop使用的是TextInputFormat,TextInputFormat使用LineRecordReader!** 4. 在Hadoop中,如果有Reduce阶段。通常key-value都需要实现序列化协议,来进行不同机器间的数据网络传输。*  	MapTask处理后的key-value,只是一个阶段性的结果!这些key-value需要传输到ReduceTask所在的机器!*  	不同机器间的数据传输最快捷的方式:将一个对象通过序列化技术,序列化到一个文件中,经过网络传输到另外一台机器,再使用反序列化技术,从文件中读取数据,还原为对象!*  	java的序列化协议的缺点: Serilizxxxxx,特点:不仅保存对象的属性值,类型,还会保存大量的包的结构,子父类和接口的继承信息!	保存的信息太多、太重*  	hadoop开发了一款轻量级的序列化协议: Wriable机制!**/
public class WCMapper extends Mapper<LongWritable, Text, Text, IntWritable>{	// KEYIN, VALUEIN, KEYOUT, VALUEOUT    第 3 个参数表示单词;第 4个参数表示词频private Text out_key=new Text();private IntWritable out_value=new IntWritable(1);// 针对输入的每个 keyin-valuein调用一次   (0,hello	hi	hello	hi),其中key为:0,value为:hello	hi	hello	hi@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {	// key 为 输入数据的每行的偏移量;value 为输入数据的每行的数据;context为输出数据System.out.println("keyin:"+key+"----keyout:"+value);String[] words = value.toString().split("\t");for (String word : words) {out_key.set(word);//写出数据(单词,1)context.write(out_key, out_value);}	}
}

WCReducer.java

package com.wyr.wordcount;import java.io.IOException;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;/*** 1. Reducer需要符合Hadoop的Reducer规范** KEYIN, VALUEIN: Mapper输出的 keyout-valueout* KEYOUT, VALUEOUT: 自定义**/
public class WCReducer extends Reducer<Text, IntWritable, Text, IntWritable>{   // KEYIN, VALUEIN, KEYOUT, VALUEOUTprivate IntWritable out_value=new IntWritable();// reduce一次处理一组数据,key相同的视为一组@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {int sum=0;for (IntWritable intWritable : values) {sum+=intWritable.get();}out_value.set(sum);//将累加的值写出context.write(key, out_value);}
}

WCDriver.java

package com.wyr.wordcount;import java.io.IOException;
import java.net.URI;import org.apache.hadoop

这篇关于大数据-Hadoop-MapReduce(二):MapReduce编程案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128902

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2