大数据-Hadoop-MapReduce(二):MapReduce编程案例

2024-09-02 03:48

本文主要是介绍大数据-Hadoop-MapReduce(二):MapReduce编程案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

案例:使用MapReduce进行词频统计

1、读取本地数据,使用本地(Windows中的hadoop)计算资源,计算结果保存到本地

在这里插入图片描述

WCMapper.java

package com.wyr.wordcount;import java.io.IOException;
import java.util.List;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.RecordReader;/*** 注意:导包时,导入 org.apache.hadoop.mapreduce包下的类(2.0的新api)* * 1. 自定义的类必须符合 MapperReduce 的Mapper的规范* * 2.在MapperReduce中,只能处理 key-value格式的数据* 	 KEYIN, VALUEIN: mapper输入的k-v类型。 由当前Job的 InputFormat 的 RecordReader决定!封装输入的 key-value 由 RecordReader 自动进行。*   KEYOUT, VALUEOUT: mapper输出的k-v类型: 自定义*   * 3. InputFormat的作用:*  		①验证输入目录中文件格式,是否符合当前Job的要求*  		②生成切片,每个切片都会交给一个MapTask处理;方法: List<InputSplit> getSplits*  		③创建RecordReader,由RecordReader从切片中读取记录,交给Mapper进行处理;方法:RecordReader<K,V> createRecordReader;默认hadoop使用的是TextInputFormat,TextInputFormat使用LineRecordReader!** 4. 在Hadoop中,如果有Reduce阶段。通常key-value都需要实现序列化协议,来进行不同机器间的数据网络传输。*  	MapTask处理后的key-value,只是一个阶段性的结果!这些key-value需要传输到ReduceTask所在的机器!*  	不同机器间的数据传输最快捷的方式:将一个对象通过序列化技术,序列化到一个文件中,经过网络传输到另外一台机器,再使用反序列化技术,从文件中读取数据,还原为对象!*  	java的序列化协议的缺点: Serilizxxxxx,特点:不仅保存对象的属性值,类型,还会保存大量的包的结构,子父类和接口的继承信息!	保存的信息太多、太重*  	hadoop开发了一款轻量级的序列化协议: Wriable机制!**/
public class WCMapper extends Mapper<LongWritable, Text, Text, IntWritable>{	// KEYIN, VALUEIN, KEYOUT, VALUEOUT    第 3 个参数表示单词;第 4个参数表示词频private Text out_key=new Text();private IntWritable out_value=new IntWritable(1);// 针对输入的每个 keyin-valuein调用一次   (0,hello	hi	hello	hi),其中key为:0,value为:hello	hi	hello	hi@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {	// key 为 输入数据的每行的偏移量;value 为输入数据的每行的数据;context为输出数据System.out.println("keyin:"+key+"----keyout:"+value);String[] words = value.toString().split("\t");for (String word : words) {out_key.set(word);//写出数据(单词,1)context.write(out_key, out_value);}	}
}

WCReducer.java

package com.wyr.wordcount;import java.io.IOException;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;/*** 1. Reducer需要符合Hadoop的Reducer规范** KEYIN, VALUEIN: Mapper输出的 keyout-valueout* KEYOUT, VALUEOUT: 自定义**/
public class WCReducer extends Reducer<Text, IntWritable, Text, IntWritable>{   // KEYIN, VALUEIN, KEYOUT, VALUEOUTprivate IntWritable out_value=new IntWritable();// reduce一次处理一组数据,key相同的视为一组@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {int sum=0;for (IntWritable intWritable : values) {sum+=intWritable.get();}out_value.set(sum);//将累加的值写出context.write(key, out_value);}
}

WCDriver.java

package com.wyr.wordcount;import java.io.IOException;
import java.net.URI;import org.apache.hadoop

这篇关于大数据-Hadoop-MapReduce(二):MapReduce编程案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128902

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个