Python爬虫案例五:将获取到的文本生成词云图

2024-09-02 02:36

本文主要是介绍Python爬虫案例五:将获取到的文本生成词云图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基础知识:

# 词云图 wordcloud
# 1、导包 jieba  wordcloud
import jieba
from wordcloud import WordCloud
data = '全年经济社会发展主要目标任务圆满完成'
data_list = list(jieba.cut(data))
# print(data_list)  # generator数据类型# 2、构造词云图样式  ===》虚拟的词云图
wb = WordCloud(width=500,height=500,background_color='white',font_path='C:\Windows\Fonts\msyh.ttc'  //window中找到此路径,字体为微软雅黑
)
# 3、添加数据
wb.generate(' '.join(data_list))  # 这里的字符串是否已经进行了切割
# 4、虚拟词云图保存到本地,注意:名字必须要用png,png属于无损压缩,jpg属于有损压缩
wb.to_file('xxx.png')  

案例实战:

源码:
# 抓取政府工作报告的文本
import requests, os, jieba, numpy
from lxml import etree
from wordcloud import WordCloud
from PIL import Image  # 装库:pip install pillow
class OneSpider(object):def __init__(self):passdef  request_start_url(self):# 爬虫部分start_url = 'https://www.ynbdm.cn/news.php'cookies = {'PHPSESSID': 'rpkr2o2rots8pe0mr9dp0kn0d1',}headers = {'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7','accept-language': 'zh-CN,zh;q=0.9','cache-control': 'max-age=0',# 'cookie': 'PHPSESSID=rpkr2o2rots8pe0mr9dp0kn0d1','priority': 'u=0, i','sec-ch-ua': '"Not/A)Brand";v="8", "Chromium";v="126", "Google Chrome";v="126"','sec-ch-ua-mobile': '?0','sec-ch-ua-platform': '"Windows"','sec-fetch-dest': 'document','sec-fetch-mode': 'navigate','sec-fetch-site': 'none','sec-fetch-user': '?1','upgrade-insecure-requests': '1','user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',}params = {'id': '31039',}response = requests.get(start_url, params=params, cookies=cookies, headers=headers).textself.parse_response(response)def parse_response(self, response):# 解析响应A = etree.HTML(response)# bt = A.xpath('//title/text()')[0].replace('!', '')nr = A.xpath('//div[@class="content_show"]//text()')nr = ''.join(nr)with open('政府工作报告.txt', 'w', encoding='utf-8') as f:f.write(nr)print('ok -- 政府工作报告.txt')def show_image(self):# 词云图部分# --------1、读文本-------------data = open('政府工作报告.txt', 'r', encoding='utf-8').read()# --------2、jieba切割-----------data_list = list(jieba.cut(data))# --------3、粗略处理文本---------data_list = [i for i in data_list if len(i) != 1]# --------4、精确处理文本(过滤敏感信息,称为停用词)----------tyc = open('../stop_words.txt', 'r', encoding='utf-8').read()tyc = tyc.split('\n')data_list = [i for i in data_list if i not in tyc]# print(data_list)# ------------------5、文本变字符串-------------TEXT = ' '.join(data_list)# --------6、添加一个背景图片------------------img = Image.open('../Y.jpg')  # 此处的image为一个数据类型mask = numpy.array(img)  # 得到矩阵形式的图片,[255 255 255 ... 255 255 255]代表RGB的含量# --------7、建立词云图样式------------------------wb = WordCloud(width=500,height=500,background_color='white',mask=mask,font_path='C:\Windows\Fonts\msyh.ttc',)# -------8、添加数据---------------wb.generate(TEXT)#--------9、生成本地效果-------------wb.to_file('第二个.png')print('------词云图生成完毕-----------')def main(self):if not os.path.exists('政府工作报告.txt'):self.request_start_url()else:self.show_image()if __name__ == '__main__':on = OneSpider()on.main()

运行效果:

# 样式

 

这篇关于Python爬虫案例五:将获取到的文本生成词云图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128753

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D