机器学习:基于机器学习的中文评论情感分析

2024-09-02 02:20

本文主要是介绍机器学习:基于机器学习的中文评论情感分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

通过机器学习技术对中文评论进行情感分析。我们使用了jieba进行中文分词,移除了停用词,并利用词袋模型(Bag of Words)和多项式朴素贝叶斯分类器对评论进行了情感分类。实验结果表明,该模型在测试集上达到了较高的准确率。

1.数据收集

我们收集了两组中文评论数据,分别代表正面(cp)和负面(hp)情感。

import pandas as pd
cp=pd.read_table(r"./评论/cp.txt",encoding='utf-8')
hp=pd.read_table(r"./评论/hp.txt",encoding='utf-8')

2.使用jieba进行中文分词。将分词结果转换为DataFrame,并保存为Excel文件。

import jieba# 初始化用于存储负面评论分词结果的列表
cp_segments=[]# 将负面评论内容转换成列表形式
contents=cp.content.values.tolist()
for content in contents:
# 对每个内容字符串使用 jieba.lcut 方法进行分词results=jieba.lcut(content)
# 如果分词结果大于1个,则添加到列表中if len(results)>1:cp_segments.append(results)
# 将正面评论的分词结果列表转换成DataFrame
cp_fc_results=pd.DataFrame({'content':cp_segments})
# 将DataFrame保存为Excel文件,不保存索引
cp_fc_results.to_excel('cp_fc_results.xlsx',index=False)# 初始化用于存储正面评论分词结果的列表
hp_segments=[]
contents=hp.content.values.tolist()
for content in contents:results=jieba.lcut(content)if len(results)>1:hp_segments.append(results)
hp_fc_results=pd.DataFrame({'content':hp_segments})
hp_fc_results.to_excel('hp_fc_results.xlsx',index=False)

3.移除停用词,以减少数据的噪声。


# 读取停用词
stopwords = pd.read_csv(r"./StopwordsCN.txt", encoding='utf-8', engine='python', index_col=False)# 定义函数,用于移除停用词
def drop_stopwords(contents,stopwords):segments_clean=[]for content in contents:line_clean=[]for word in content:if word in stopwords:continueline_clean.append(word)segments_clean.append(line_clean)return segments_clean# 移除正面评论的停用词
contents = cp_fc_results.content.values.tolist()
stopwords_list = stopwords.stopword.values.tolist()
cp_fc_clean_s = drop_stopwords(contents, stopwords_list)# 移除负面评论的停用词
contents = hp_fc_results.content.values.tolist()
hp_fc_clean_s = drop_stopwords(contents, stopwords_list)

4.使用词袋模型(Bag of Words)将文本数据转换为数值向量

# 创建训练数据集
cp_train = pd.DataFrame({'segments_clean': cp_fc_clean_s, 'label': 1})
hp_train = pd.DataFrame({'segments_clean': hp_fc_clean_s, 'label': 0})
pj_train = pd.concat([cp_train, hp_train])
pj_train.to_excel('pj_train.xlsx', index=False)# 划分训练集和测试集
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(pj_train['segments_clean'].values, pj_train['label'].values, random_state=0)# 将训练集转换为字符串格式
words=[]
for line_index in range(len(x_train)):words.append(' '.join(x_train[line_index]))
print(words)# 使用词袋模型进行特征提取
from sklearn.feature_extraction.text import CountVectorizer
vec = CountVectorizer(max_features=4000, lowercase=False, ngram_range=(1, 1))
vec.fit(words)

5.采用多项式朴素贝叶斯分类器进行模型训练。

# 训练多项式朴素贝叶斯分类器
from sklearn.naive_bayes import MultinomialNB
classifier = MultinomialNB(alpha=0.1)
classifier.fit(vec.transform(words), y_train)
predict_train = classifier.predict(vec.transform(words))

6.使用准确率、召回率和F1分数等指标来评估模型的性能。

# 打印训练集上的分类报告
from sklearn import metrics
print(metrics.classification_report(y_train,predict_train))test_words=[]
# 遍历测试集,将每个样本的分词结果转换为字符串格式
for line_index in range(len(x_test)):test_words.append(' '.join(x_test[line_index]))
predict_test=classifier.predict(vec.transform(test_words))
print(metrics.classification_report(y_test,predict_test))

7.识别评论

s='这个玩意真好,我很喜欢'
a=[]
# 使用jieba进行分词
a0=jieba.lcut(s)
if len(a0)>1:a.append(a0)
# 将分词结果转换为DataFrame
a1=pd.DataFrame({'content':a},)
# 获取分词结果列表
a2=a1.content.values.tolist()
# 移除停用词
a1_clean_s=drop_stopwords(a1,stopwords)# 将清理后的分词结果转换为字符串格式,以符合模型预测的输入要求
word_1=[]
for line_index in range(len(a1_clean_s)):word_1.append(' '.join(a1_clean_s[line_index]))# 使用分类器进行预测
predict_word_1=classifier=classifier.predict(vec.transform(word_1))
print(predict_word_1)

8.输出结果

9.完整代码

import pandas as pd
cp=pd.read_table(r"./评论/2.txt",encoding='utf-8')
hp=pd.read_table(r"./评论/3.txt",encoding='utf-8')import jieba
cp_segments=[]
#将内容转换成列表形式
contents=cp.content.values.tolist()
for content in contents:
#对每个内容字符串使用 jieba.lcut 方法进行分词,该方法返回一个列表,包含分词后的结果。results=jieba.lcut(content)if len(results)>1:cp_segments.append(results)
#将列表转换成DataFrame
cp_fc_results=pd.DataFrame({'content':cp_segments})
cp_fc_results.to_excel('cp_fc_results.xlsx',index=False)hp_segments=[]
contents=hp.content.values.tolist()
for content in contents:results=jieba.lcut(content)if len(results)>1:hp_segments.append(results)
hp_fc_results=pd.DataFrame({'content':hp_segments})
hp_fc_results.to_excel('hp_fc_results.xlsx',index=False)# 定义函数,用于移除停用词
stopwords=pd.read_csv(r".\StopwordsCN.txt",encoding='utf-8',engine='python',index_col=False)
def drop_stopwords(contents,stopwords):segments_clean=[]for content in contents:line_clean=[]for word in content:if word in stopwords:continueline_clean.append(word)segments_clean.append(line_clean)return segments_cleancontents=cp_fc_results.content.values.tolist()
stopwords=stopwords.stopword.values.tolist()
cp_fc_clean_s=drop_stopwords(contents,stopwords)contents=hp_fc_results.content.values.tolist()
hp_fc_clean_s=drop_stopwords(contents,stopwords)cp_train=pd.DataFrame({'segments_clean':cp_fc_clean_s,'label':1})
hp_train=pd.DataFrame({'segments_clean':hp_fc_clean_s,'label':0})
pj_train=pd.concat([cp_train,hp_train])
pj_train.to_excel('pj_trian.xlsx',index=False)from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(pj_train['segments_clean'].values,pj_train['label'].values,random_state=0)words=[]
for line_index in range(len(x_train)):words.append(' '.join(x_train[line_index]))
print(words)from sklearn.feature_extraction.text import CountVectorizer
vec=CountVectorizer(max_features=4000,lowercase=False,ngram_range=(1,1))
vec.fit(words)from sklearn.naive_bayes import MultinomialNB
classifier=MultinomialNB(alpha=0.1)
classifier.fit(vec.transform(words),y_train)
predict_train=classifier.predict(vec.transform(words))from sklearn import metrics
print(metrics.classification_report(y_train,predict_train))test_words=[]
for line_index in range(len(x_test)):test_words.append(' '.join(x_test[line_index]))
predict_test=classifier.predict(vec.transform(test_words))
print(metrics.classification_report(y_test,predict_test))s='这个玩意真好,我很喜欢'
a=[]
a0=jieba.lcut(s)
if len(a0)>1:a.append(a0)
a1=pd.DataFrame({'content':a},)a2=a1.content.values.tolist()
a1_clean_s=drop_stopwords(a1,stopwords)word_1=[]
for line_index in range(len(a1_clean_s)):word_1.append(' '.join(a1_clean_s[line_index]))
predict_word_1=classifier.predict(vec.transform(word_1))print(predict_word_1)

这篇关于机器学习:基于机器学习的中文评论情感分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128726

相关文章

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

Spring、Spring Boot、Spring Cloud 的区别与联系分析

《Spring、SpringBoot、SpringCloud的区别与联系分析》Spring、SpringBoot和SpringCloud是Java开发中常用的框架,分别针对企业级应用开发、快速开... 目录1. Spring 框架2. Spring Boot3. Spring Cloud总结1. Sprin

Spring 中 BeanFactoryPostProcessor 的作用和示例源码分析

《Spring中BeanFactoryPostProcessor的作用和示例源码分析》Spring的BeanFactoryPostProcessor是容器初始化的扩展接口,允许在Bean实例化前... 目录一、概览1. 核心定位2. 核心功能详解3. 关键特性二、Spring 内置的 BeanFactory

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析

《MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析》本文将详细讲解MyBatis-Plus中的lambdaUpdate用法,并提供丰富的案例来帮助读者更好地理解和应... 目录深入探索MyBATis-Plus中Service接口的lambdaUpdate用法及示例案例背景

MyBatis-Plus中静态工具Db的多种用法及实例分析

《MyBatis-Plus中静态工具Db的多种用法及实例分析》本文将详细讲解MyBatis-Plus中静态工具Db的各种用法,并结合具体案例进行演示和说明,具有很好的参考价值,希望对大家有所帮助,如有... 目录MyBATis-Plus中静态工具Db的多种用法及实例案例背景使用静态工具Db进行数据库操作插入