Pandas-高级处理(七):透视表(pivot_table)【以指定列作为行索引对另一指定列的值进行分组聚合操作】、交叉表(crosstab)【统计频率】

本文主要是介绍Pandas-高级处理(七):透视表(pivot_table)【以指定列作为行索引对另一指定列的值进行分组聚合操作】、交叉表(crosstab)【统计频率】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

交叉表与透视表的作用

  • 交叉表:计算一列数据对于另外一列数据的分组个数
  • 透视表:指定某一列对另一列的关系

一、透视表

透视表是一种可以对数据动态排布并且分类汇总的表格格式。

透视表:透视表是将原有的DataFrame的列分别作为行索引和列索引,然后对指定的列应用聚集函数

  • data.pivot_table()
  • DataFrame.pivot_table([], index=[])

比如:pd.pivot_table(data=df, index='date', values='values', aggfunc=np.sum) 以 date 列作为行索引对values列进行分组聚合(sum)操作。

import numpy as np
import pandas as pd# 透视表:pivot_table
# pd.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')date = ['2017-5-1', '2017-5-2', '2017-5-3'] * 3
rng = pd.to_datetime(date)
df = pd.DataFrame({'date': rng,'key': list('abcdabcda'),'values': np.random.rand(9) * 10})
print("df = \n", df)
print('-' * 200)# data:DataFrame对象
# values:要聚合的列或列的列表
# index:数据透视表的index,从原数据的列中筛选
# columns:数据透视表的columns,从原数据的列中筛选
# aggfunc:用于聚合的函数,默认为numpy.mean,支持numpy计算方法x1 = pd.pivot_table(data=df, values='values', index='date', aggfunc=np.sum)  # 也可以写 aggfunc='sum'
print("x1 = pd.pivot_table(data=df, values='values', index='date', aggfunc=np.sum) = \n", x1)
print('-' * 200)# 这里就分别以date、key共同做数据透视,值为values:统计不同(date,key)情况下values的和
# aggfunc=len(或者count):计数
x2 = pd.pivot_table(df, values='values', index=['date', 'key'], aggfunc=np.sum)
print("x2 = pd.pivot_table(df, values='values', index=['date', 'key'], aggfunc=np.sum) = \n", x2)
print('-' * 200)# 这里就分别以date、key共同做数据透视,值为values:统计不同(date,key)情况下values的长度【aggfunc=len:计数】
x3 = pd.pivot_table(df, values='values', index=['date', 'key'], aggfunc=len)
print("x3 = pd.pivot_table(df, values='values', index=['date', 'key'], aggfunc=len) = \n", x3)
print('-' * 200)

打印结果:

df = date key    values
0 2017-05-01   a  6.331764
1 2017-05-02   b  0.139295
2 2017-05-03   c  7.775829
3 2017-05-01   d  0.366474
4 2017-05-02   a  9.533083
5 2017-05-03   b  0.671094
6 2017-05-01   c  5.951416
7 2017-05-02   d  5.920482
8 2017-05-03   a  6.119202
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
x1 = pd.pivot_table(data=df, values='values', index='date', aggfunc=np.sum) = values
date                 
2017-05-01  12.649654
2017-05-02  15.592859
2017-05-03  14.566126
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
x2 = pd.pivot_table(df, values='values', index=['date', 'key'], aggfunc=np.sum) = values
date       key          
2017-05-01 a    6.331764c    5.951416d    0.366474
2017-05-02 a    9.533083b    0.139295d    5.920482
2017-05-03 a    6.119202b    0.671094c    7.775829
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
x3 = pd.pivot_table(df, values='values', index=['date', 'key'], aggfunc=len) = values
date       key        
2017-05-01 a       1.0c       1.0d       1.0
2017-05-02 a       1.0b       1.0d       1.0
2017-05-03 a       1.0b       1.0c       1.0
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Process finished with exit code 0

二、交叉表

交叉表:交叉表用于计算一列数据对于另外一列数据的分组个数(用于统计分组频率的特殊透视表)

  • pd.crosstab(value1, value2)
import numpy as np
import pandas as pd# 交叉表:crosstab
# 默认情况下,crosstab计算因子的频率表,比如用于str的数据透视分析
# pd.crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, dropna=True, normalize=False)df = pd.DataFrame({'A': [1, 2, 2, 2, 2],'B': [3, 3, 4, 4, 4],'C': [1, 1, np.nan, 1, 1]})
print("df = \n", df)
print('-' * 200)# 如果crosstab只接收两个Series,它将提供一个频率表。
# 用A的唯一值,统计B唯一值的出现次数
x1 = pd.crosstab(df['A'], df['B'])
print("pd.crosstab(df['A'], df['B']) = \n", x1)
print('-' * 200)# normalize:默认False,将所有值除以值的总和进行归一化 → 为True时候显示百分比
x2 = pd.crosstab(df['A'], df['B'], normalize=True)
print("x2 = pd.crosstab(df['A'], df['B'], normalize=True) = \n", x2)
print('-' * 200)# values:可选,根据因子聚合的值数组
# aggfunc:可选,如果未传递values数组,则计算频率表,如果传递数组,则按照指定计算
# 这里相当于以A和B界定分组,计算出每组中第三个系列C的值
x3 = pd.crosstab(df['A'], df['B'], values=df['C'], aggfunc=np.sum)
print("x3 = pd.crosstab(df['A'], df['B'], values=df['C'], aggfunc=np.sum) = \n", x3)
print('-' * 200)# margins:布尔值,默认值False,添加行/列边距(小计)
x4 = pd.crosstab(df['A'], df['B'], values=df['C'], aggfunc=np.sum, margins=True)
print("x4 = pd.crosstab(df['A'], df['B'], values=df['C'], aggfunc=np.sum, margins=True) = \n", x4)
print('-' * 200)

打印结果:

df = A  B    C
0  1  3  1.0
1  2  3  1.0
2  2  4  NaN
3  2  4  1.0
4  2  4  1.0
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
pd.crosstab(df['A'], df['B']) = B  3  4
A      
1  1  0
2  1  3
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
x2 = pd.crosstab(df['A'], df['B'], normalize=True) = B    3    4
A          
1  0.2  0.0
2  0.2  0.6
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
x3 = pd.crosstab(df['A'], df['B'], values=df['C'], aggfunc=np.sum) = B    3    4
A          
1  1.0  NaN
2  1.0  2.0
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
x4 = pd.crosstab(df['A'], df['B'], values=df['C'], aggfunc=np.sum, margins=True) = B      3    4  All
A                 
1    1.0  NaN  1.0
2    1.0  2.0  3.0
All  2.0  2.0  4.0
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Process finished with exit code 0

三、案例分析

1 交叉表与透视表什么作用

探究股票的涨跌与星期几有关?

以下图当中表示,week代表星期几,1,0代表这一天股票的涨跌幅是好还是坏,里面的数据代表比例

可以理解为所有时间为星期一等等的数据当中涨跌幅好坏的比例

在这里插入图片描述

在这里插入图片描述

2 案例分析

2.1 数据准备

  • 准备两列数据,星期数据以及涨跌幅是好是坏数据
  • 进行交叉表计算
# 寻找星期几跟股票张得的关系
# 1、先把对应的日期找到星期几
date = pd.to_datetime(data.index).weekday
data['week'] = date# 2、假如把p_change按照大小去分个类0为界限
data['posi_neg'] = np.where(data['p_change'] > 0, 1, 0)# 通过交叉表找寻两列数据的关系
count = pd.crosstab(data['week'], data['posi_neg'])

但是我们看到count只是每个星期日子的好坏天数,并没有得到比例,该怎么去做?

  • 对于每个星期一等的总天数求和,运用除法运算求出比例
# 算数运算,先求和
sum = count.sum(axis=1).astype(np.float32)# 进行相除操作,得出比例
pro = count.div(sum, axis=0)

2.2 查看效果

使用plot画出这个比例,使用stacked的柱状图

pro.plot(kind='bar', stacked=True)
plt.show()

在这里插入图片描述

2.3 使用pivot_table(透视表)实现

使用透视表,刚才的过程更加简单

# 通过透视表,将整个过程变成更简单一些
data_pivot = data.pivot_table(['posi_neg'], index='week')
data_pivot.plot(kind="bar")
plt.show()

在这里插入图片描述

这篇关于Pandas-高级处理(七):透视表(pivot_table)【以指定列作为行索引对另一指定列的值进行分组聚合操作】、交叉表(crosstab)【统计频率】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128676

相关文章

MySQL游标和触发器的操作流程

《MySQL游标和触发器的操作流程》本文介绍了MySQL中的游标和触发器的使用方法,游标可以对查询结果集进行逐行处理,而触发器则可以在数据表发生更改时自动执行预定义的操作,感兴趣的朋友跟随小编一起看看... 目录游标游标的操作流程1. 定义游标2.打开游标3.利用游标检索数据4.关闭游标例题触发器触发器的基

在C#中分离饼图的某个区域的操作指南

《在C#中分离饼图的某个区域的操作指南》在处理Excel饼图时,我们可能需要将饼图的各个部分分离出来,以使它们更加醒目,Spire.XLS提供了Series.DataFormat.Percent属性,... 目录引言如何设置饼图各分片之间分离宽度的代码示例:从整个饼图中分离单个分片的代码示例:引言在处理

Python列表的创建与删除的操作指南

《Python列表的创建与删除的操作指南》列表(list)是Python中最常用、最灵活的内置数据结构之一,它支持动态扩容、混合类型、嵌套结构,几乎无处不在,但你真的会创建和删除列表吗,本文给大家介绍... 目录一、前言二、列表的创建方式1. 字面量语法(最常用)2. 使用list()构造器3. 列表推导式

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

MySQL基本表查询操作汇总之单表查询+多表操作大全

《MySQL基本表查询操作汇总之单表查询+多表操作大全》本文全面介绍了MySQL单表查询与多表操作的关键技术,包括基本语法、高级查询、表别名使用、多表连接及子查询等,并提供了丰富的实例,感兴趣的朋友跟... 目录一、单表查询整合(一)通用模版展示(二)举例说明(三)注意事项(四)Mapper简单举例简单查询

Nginx概念、架构、配置与虚拟主机实战操作指南

《Nginx概念、架构、配置与虚拟主机实战操作指南》Nginx是一个高性能的HTTP服务器、反向代理服务器、负载均衡器和IMAP/POP3/SMTP代理服务器,它支持高并发连接,资源占用低,功能全面且... 目录Nginx 深度解析:概念、架构、配置与虚拟主机实战一、Nginx 的概念二、Nginx 的特点

pandas使用apply函数给表格同时添加多列

《pandas使用apply函数给表格同时添加多列》本文介绍了利用Pandas的apply函数在DataFrame中同时添加多列,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、Pandas使用apply函数给表格同时添加多列二、应用示例一、Pandas使用apply函

pandas批量拆分与合并Excel文件的实现示例

《pandas批量拆分与合并Excel文件的实现示例》本文介绍了Pandas中基于整数位置的iloc和基于标签的loc方法进行数据索引和切片的操作,并将大Excel文件拆分合并,具有一定的参考价值,感... 目录一、Pandas 进行索引和切编程片的iloc、loc方法二、Pandas批量拆分与合并Exce