deeplabv3+二:详细代码解读 data generator 数据生成器

2024-09-01 23:48

本文主要是介绍deeplabv3+二:详细代码解读 data generator 数据生成器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3+支持三种数据库,voc2012,cityscapes,ade20k,

代码文件夹

-deeplab

    -datasets

         -data_generator.py

在开始之前,始终记住,网络模型的输入是非常简单的image,规格化到[-1,1]或[0,1],或者数据扩增(水平翻转,随机裁剪,明暗变化,模糊),以及一个实施了相同数据扩增的label(毕竟需要pixel对上),test的话只需要一个image。是非常简单的数据格式,也许程序员会为了存储的压缩量以及读取处理的速度(指的就是使用tf.example 与 tf.record)写复杂的代码,但是最终的结果始终都是很简单的。

觉得自己一定要先搞清楚tf.example 与tf.record:https://zhuanlan.zhihu.com/p/33223782

 

目录

数据库分析

代码重点类Dataset

1.方法_parse_function()

2. 方法_preprocess_image()

2.1 input_preprocess的preprocess_image_and_label方法介绍

3.方法 _get_all_files(self):

4.方法 get_one_shot_iterator(self)

Class TFRecordDataset

代码使用是在train.py里面:


代码:先放代码,你可以尝试自己看,看得懂就不用往下翻浪费时间了。

# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Wrapper for providing semantic segmentaion data.The SegmentationDataset class provides both images and annotations (semantic
segmentation and/or instance segmentation) for TensorFlow. Currently, we
support the following datasets:1. PASCAL VOC 2012 (http://host.robots.ox.ac.uk/pascal/VOC/voc2012/).PASCAL VOC 2012 semantic segmentation dataset annotates 20 foreground objects
(e.g., bike, person, and so on) and leaves all the other semantic classes as
one background class. The dataset contains 1464, 1449, and 1456 annotated
images for the training, validation and test respectively.2. Cityscapes dataset (https://www.cityscapes-dataset.com)The Cityscapes dataset contains 19 semantic labels (such as road, person, car,
and so on) for urban street scenes.3. ADE20K dataset (http://groups.csail.mit.edu/vision/datasets/ADE20K)The ADE20K dataset contains 150 semantic labels both urban street scenes and
indoor scenes.References:M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams, J. Winn,and A. Zisserman, The pascal visual object classes challenge a retrospective.IJCV, 2014.M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,U. Franke, S. Roth, and B. Schiele, "The cityscapes dataset for semantic urbanscene understanding," In Proc. of CVPR, 2016.B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, A. Torralba, "Scene Parsingthrough ADE20K dataset", In Proc. of CVPR, 2017.
"""import collections
import os
import tensorflow as tf
from deeplab import common
from deeplab import input_preprocess# Named tuple to describe the dataset properties.
DatasetDescriptor = collections.namedtuple('DatasetDescriptor',['splits_to_sizes',  # Splits of the dataset into training, val and test.'num_classes',  # Number of semantic classes, including the# background class (if exists). For example, there# are 20 foreground classes + 1 background class in# the PASCAL VOC 2012 dataset. Thus, we set# num_classes=21.'ignore_label',  # Ignore label value.])_CITYSCAPES_INFORMATION = DatasetDescriptor(splits_to_sizes={'train': 2975,'val': 500,},num_classes=19,ignore_label=255,
)_PASCAL_VOC_SEG_INFORMATION = DatasetDescriptor(splits_to_sizes={'train': 1464,'train_aug': 10582,'trainval': 2913,'val': 1449,},num_classes=21,ignore_label=255,
)_ADE20K_INFORMATION = DatasetDescriptor(splits_to_sizes={'train': 20210,  # num of samples in images/training'val': 2000,  # num of samples in images/validation},num_classes=151,ignore_label=0,
)_DATASETS_INFORMATION = {'cityscapes': _CITYSCAPES_INFORMATION,'pascal_voc_seg': _PASCAL_VOC_SEG_INFORMATION,'ade20k': _ADE20K_INFORMATION,
}# Default file pattern of TFRecord of TensorFlow Example.
_FILE_PATTERN = '%s-*'def get_cityscapes_dataset_name():return 'cityscapes'class Dataset(object):"""Represents input dataset for deeplab model."""def __init__(self,dataset_name,split_name,dataset_dir,batch_size,crop_size,min_resize_value=None,max_resize_value=None,resize_factor=None,min_scale_factor=1.,max_scale_factor=1.,scale_factor_step_size=0,model_variant=None,num_readers=1,is_training=False,should_shuffle=False,should_repeat=False):"""Initializes the dataset.Args:dataset_name: Dataset name.split_name: A train/val Split name.dataset_dir: The directory of the dataset sources.batch_size: Batch size.crop_size: The size used to crop the image and label.min_resize_value: Desired size of the smaller image side.max_resize_value: Maximum allowed size of the larger image side.resize_factor: Resized dimensions are multiple of factor plus one.min_scale_factor: Minimum scale factor value.max_scale_factor: Maximum scale factor value.scale_factor_step_size: The step size from min scale factor to max scalefactor. The input is randomly scaled based on the v

这篇关于deeplabv3+二:详细代码解读 data generator 数据生成器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128397

相关文章

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一