本文主要是介绍deeplabv3+二:详细代码解读 data generator 数据生成器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
3+支持三种数据库,voc2012,cityscapes,ade20k,
代码文件夹
-deeplab
-datasets
-data_generator.py
在开始之前,始终记住,网络模型的输入是非常简单的image,规格化到[-1,1]或[0,1],或者数据扩增(水平翻转,随机裁剪,明暗变化,模糊),以及一个实施了相同数据扩增的label(毕竟需要pixel对上),test的话只需要一个image。是非常简单的数据格式,也许程序员会为了存储的压缩量以及读取处理的速度(指的就是使用tf.example 与 tf.record)写复杂的代码,但是最终的结果始终都是很简单的。
觉得自己一定要先搞清楚tf.example 与tf.record:https://zhuanlan.zhihu.com/p/33223782
目录
数据库分析
代码重点类Dataset
1.方法_parse_function()
2. 方法_preprocess_image()
2.1 input_preprocess的preprocess_image_and_label方法介绍
3.方法 _get_all_files(self):
4.方法 get_one_shot_iterator(self)
Class TFRecordDataset
代码使用是在train.py里面:
代码:先放代码,你可以尝试自己看,看得懂就不用往下翻浪费时间了。
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Wrapper for providing semantic segmentaion data.The SegmentationDataset class provides both images and annotations (semantic
segmentation and/or instance segmentation) for TensorFlow. Currently, we
support the following datasets:1. PASCAL VOC 2012 (http://host.robots.ox.ac.uk/pascal/VOC/voc2012/).PASCAL VOC 2012 semantic segmentation dataset annotates 20 foreground objects
(e.g., bike, person, and so on) and leaves all the other semantic classes as
one background class. The dataset contains 1464, 1449, and 1456 annotated
images for the training, validation and test respectively.2. Cityscapes dataset (https://www.cityscapes-dataset.com)The Cityscapes dataset contains 19 semantic labels (such as road, person, car,
and so on) for urban street scenes.3. ADE20K dataset (http://groups.csail.mit.edu/vision/datasets/ADE20K)The ADE20K dataset contains 150 semantic labels both urban street scenes and
indoor scenes.References:M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams, J. Winn,and A. Zisserman, The pascal visual object classes challenge a retrospective.IJCV, 2014.M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,U. Franke, S. Roth, and B. Schiele, "The cityscapes dataset for semantic urbanscene understanding," In Proc. of CVPR, 2016.B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, A. Torralba, "Scene Parsingthrough ADE20K dataset", In Proc. of CVPR, 2017.
"""import collections
import os
import tensorflow as tf
from deeplab import common
from deeplab import input_preprocess# Named tuple to describe the dataset properties.
DatasetDescriptor = collections.namedtuple('DatasetDescriptor',['splits_to_sizes', # Splits of the dataset into training, val and test.'num_classes', # Number of semantic classes, including the# background class (if exists). For example, there# are 20 foreground classes + 1 background class in# the PASCAL VOC 2012 dataset. Thus, we set# num_classes=21.'ignore_label', # Ignore label value.])_CITYSCAPES_INFORMATION = DatasetDescriptor(splits_to_sizes={'train': 2975,'val': 500,},num_classes=19,ignore_label=255,
)_PASCAL_VOC_SEG_INFORMATION = DatasetDescriptor(splits_to_sizes={'train': 1464,'train_aug': 10582,'trainval': 2913,'val': 1449,},num_classes=21,ignore_label=255,
)_ADE20K_INFORMATION = DatasetDescriptor(splits_to_sizes={'train': 20210, # num of samples in images/training'val': 2000, # num of samples in images/validation},num_classes=151,ignore_label=0,
)_DATASETS_INFORMATION = {'cityscapes': _CITYSCAPES_INFORMATION,'pascal_voc_seg': _PASCAL_VOC_SEG_INFORMATION,'ade20k': _ADE20K_INFORMATION,
}# Default file pattern of TFRecord of TensorFlow Example.
_FILE_PATTERN = '%s-*'def get_cityscapes_dataset_name():return 'cityscapes'class Dataset(object):"""Represents input dataset for deeplab model."""def __init__(self,dataset_name,split_name,dataset_dir,batch_size,crop_size,min_resize_value=None,max_resize_value=None,resize_factor=None,min_scale_factor=1.,max_scale_factor=1.,scale_factor_step_size=0,model_variant=None,num_readers=1,is_training=False,should_shuffle=False,should_repeat=False):"""Initializes the dataset.Args:dataset_name: Dataset name.split_name: A train/val Split name.dataset_dir: The directory of the dataset sources.batch_size: Batch size.crop_size: The size used to crop the image and label.min_resize_value: Desired size of the smaller image side.max_resize_value: Maximum allowed size of the larger image side.resize_factor: Resized dimensions are multiple of factor plus one.min_scale_factor: Minimum scale factor value.max_scale_factor: Maximum scale factor value.scale_factor_step_size: The step size from min scale factor to max scalefactor. The input is randomly scaled based on the v
这篇关于deeplabv3+二:详细代码解读 data generator 数据生成器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!