python数据预处理练习

2024-09-01 22:58
文章标签 python 数据 练习 预处理

本文主要是介绍python数据预处理练习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[python]  view plain  copy
  1. #ecoding=utf-8  
  2. import math  
  3. import re  
  4. import csv  
  5.   
  6. def fileREAD(fileURL,access):  
  7.     "传入文件路径,返回存储文件内容的二维列表"  
  8.     localArray = []  # 创建一个列表用于存储文件内容  
  9.     csvfile = file(fileURL, access)  
  10.     reader = csv.reader(csvfile)  
  11.     for line in reader:  
  12.         localArray.append(line)  
  13.     csvfile.close()  
  14.     return localArray  
  15.   
  16. def getLine(inList,Line):  
  17.     "获得某一行数据"  
  18.     return inList[Line]  
  19.   
  20. def getRow(inList,Row):  
  21.     "获得某一列数据"  
  22.     listReturn = []  
  23.     for i in inList:  
  24.         listReturn.append(i[Row])  
  25.     return listReturn  
  26.   
  27. def setLine(inList,childList,Line):  
  28.     "设置矩阵某一行数据"  
  29.     inList[Line] = childList  
  30.   
  31. def setRow(inList,chikdList,Row):  
  32.     "设置矩阵的某一列"  
  33.     i = 0  
  34.     for i in range(0,len(chikdList)):  
  35.         inList[i][Row] = chikdList[i]  
  36.   
  37. def addLine(inList,childLine):  
  38.     "给数据矩阵添加一行"  
  39.     inList.append(childLine)  
  40.   
  41. def addRow(inList,childRow):  
  42.     "给数据矩阵添加一列"  
  43.     j = 0  
  44.     for i in inList:  
  45.         i.append(childRow[j])  
  46.         j = j+1  
  47.   
  48. def getAVG(inList):  
  49.     "求数值属性的均值"  
  50.     sumOfList = 0  
  51.     lengOfList = 0  
  52.     for i in inList:  
  53.         if re.match(r'[0-9]+',i):  
  54.             sumOfList = sumOfList + float(i)  
  55.             lengOfList = lengOfList + 1  
  56.         else:  
  57.             continue  
  58.     if lengOfList != 0 :  
  59.         return sumOfList/lengOfList  
  60.     else:  
  61.         return "当前特征无平均值"  
  62.   
  63. def getAVE(inList):  
  64.     "求数值属性的方差"  
  65.     #先求平均数  
  66.     sumOfList = 0  
  67.     lengOfList = 0  
  68.     su = 0  
  69.     for i in inList:  
  70.         if re.match(r'[0-9]+', i):  
  71.             sumOfList = sumOfList + float(i)  
  72.             lengOfList = lengOfList + 1  
  73.         else:  
  74.             continue  
  75.     if lengOfList != 0:  
  76.         avg = sumOfList / lengOfList  
  77.         for j in inList:  
  78.             if re.match(r'[0-9]+',j):  
  79.                 su += (float(j) - avg) ** 2  
  80.             else:  
  81.                 continue  
  82.         return math.sqrt(su)  
  83.     else:  
  84.         return "当前特征无方差"  
  85.   
  86. def average(seq, total=0.0):  
  87.   num = 0  
  88.   for item in seq:  
  89.     total += item  
  90.     num += 1  
  91.   return total / num  
  92.   
  93. def getQUANTILE(inList,inlocaltion):  
  94.     "求数值属性的分位数"  
  95.     if inlocaltion >1 or inlocaltion<0 or inlocaltion == 1:  
  96.         return "输入的分位数数值错误"  
  97.     localLst = []  
  98.     leng = 0  
  99.     for i in inList:  
  100.         if re.match(r'[0-9]+',i):  
  101.             localLst.append(float(i))  
  102.             leng = leng + 1  
  103.         else:  
  104.             continue  
  105.     if leng == 0:  
  106.         return "当前特征不可求中位数"  
  107.     localLst.sort()  
  108.     if inlocaltion == 0.5:  
  109.          if len(localLst)%2 == 1:  
  110.              return localLst[len(localLst)//2]  
  111.          else:  
  112.              return (localLst[len(localLst)//2-1]+localLst[len(localLst)//2])/2.0  
  113.     elif inlocaltion<1 and inlocaltion>=0:  
  114.         return localLst[int(len(localLst)*inlocaltion)]  
  115.   
  116. def fileREAD(fileURL,access):  
  117.     "传入文件路径,返回存储文件内容的二维列表"  
  118.     localArray = []  # 创建一个列表用于存储文件内容  
  119.     csvfile = file(fileURL, access)  
  120.     reader = csv.reader(csvfile)  
  121.     for line in reader:  
  122.         localArray.append(line)  
  123.     csvfile.close()  
  124.     return localArray  
  125.   
  126. def removeNoiseAuto(inList):  
  127.     "利用IRQ识别噪声数据并去除该数据"  
  128.     Q3 = getQUANTILE(inList,0.75)  
  129.     Q1 = getQUANTILE(inList,0.25)  
  130.     IRQ = Q3 - Q1  
  131.     for i in range(1,len(inList),1):  
  132.         if float(inList[i]) - Q3 > 1.5*IRQ or Q1 - float(inList[i]) > 1.5*IRQ:  
  133.             inList[i] = ''  
  134.     return inList  
  135.   
  136. def removeNoiseByThresholdMin(inList,inThresholdMin):  
  137.     "根据最小阈值去除噪声数据去除该数据"  
  138.     for i in range(1, len(inList), 1):  
  139.         if float(inList[i]) < inThresholdMin:  
  140.             inList[i] = ''  
  141.     return inList  
  142.   
  143. def removeNoiseByThresholdMax(inList,inThresholdMax):  
  144.     "根据最大阈值去除噪声数据去除该数据"  
  145.     for i in range(1, len(inList), 1):  
  146.         if float(inList[i]) > inThresholdMax:  
  147.             inList[i] = ''  
  148.     return inList  
  149.   
  150. def autoPaddingByAVG(inList):  
  151.     "利用均值补全缺失值"  
  152.     avg = getAVG(inList)  
  153.     for i in range(1, len(inList), 1):  
  154.         if inList[i] == '':  
  155.             inList[i] = str(avg)  
  156.     return inList  
  157.   
  158. def autoPaddingByMedian(inList):  
  159.     "利用中位数补全缺失值"  
  160.     avg = getQUANTILE(inList,0.5)  
  161.     for i in range(1, len(inList), 1):  
  162.         if inList[i] == '':  
  163.             inList[i] = str(avg)  
  164.     return inList  
  165.   
  166. def binningWidth(inList,width):  
  167.     "数据离散化:等宽分箱"  
  168.     dic = {}  
  169.     for i in range(1,len(inList)):  
  170.         dic[i] =float(inList[i])  
  171.     dict = sorted(dic.iteritems(), key=lambda d: d[1], reverse= False)  # 先将列表按value排序  
  172.     dictList = []  # 将排序后元素赋值给一个列表,用于存储K-V对  
  173.     for varlo in dict:  
  174.         dictList.append(list(varlo))  
  175.     i = 0  # 用于记录每个箱开始位置  
  176.     j = 0  #用于记录每个箱结束位置  
  177.     innerList = []  
  178.     for i in range(0, len(dictList)):  
  179.         if dictList[i][1] - dictList[j][1] > width:  
  180.             avg = average(innerList)  
  181.             for k in range(j, i, 1):  
  182.                 dictList[k][1] = avg  
  183.             innerList = []  
  184.             j = i  
  185.         innerList.append(dictList[i][1])  
  186.         if (i == len(dictList)-1):  
  187.             avg = average(innerList)  
  188.             for k in range(j, i, 1):  
  189.                 dictList[k][1] = avg  
  190.             innerList = []  
  191.             dictList[i][1] = avg  
  192.   
  193.     dic1 = {}  
  194.     for i in range(0, len(dictList)):  
  195.         dic1[dictList[i][0]] = dictList[i][1]  
  196.     ad = sorted(dic1.iteritems(), key=lambda d: d[0], reverse=False)  # 先将列表按KEY排序  
  197.     for i in range(0, len(ad)):  
  198.         inList[i + 1] = ad[i][1]  
  199.     return inList  
  200.   
  201. def binningDeep(inList,deep1):  
  202.     "数据离散化:等频分箱"  
  203.     deep = deep1 -1  
  204.     dic = {}  
  205.     for i in range(1,len(inList)):  
  206.         dic[i] =float(inList[i])  
  207.     dict = sorted(dic.iteritems(), key=lambda d: d[1], reverse= False)  # 先将列表按value排序  
  208.     dictList = []  # 将排序后元素赋值给一个列表,用于存储K-V对  
  209.     for varlo in dict:  
  210.         dictList.append(list(varlo))  
  211.     innerList = []  
  212.     for i in range(0,deep):  #为了排除0的干扰,首先处理掉deep个元素  
  213.         innerList.append(dictList[i][1])  
  214.     for i in range(deep, len(dictList)):  
  215.         if i % deep == 0:  
  216.             avg = average(innerList)  
  217.             for j in range(i-deep,i):  
  218.                 dictList[j][1] = avg  
  219.             innerList = []  
  220.         innerList.append(dictList[i][1])  
  221.         if i == len(dictList)-1:  
  222.             avg = average(innerList)  
  223.             for j in range((i+1)/deep*deep,i+1):  
  224.                 dictList[j][1] = avg  
  225.   
  226.     dic1 = {}  
  227.     for i in range(0, len(dictList)):  
  228.         dic1[dictList[i][0]] = dictList[i][1]  
  229.     ad = sorted(dic1.iteritems(), key=lambda d: d[0], reverse= False)  # 先将列表按KEY排序  
  230.     for i in range(0,len(ad)):  
  231.         inList[i+1] = ad[i][1]  
  232.     return inList  
  233.   
  234. def oneHot(inList,Row):  
  235.     "对输入数据矩阵的某一列使用oneHot编码"  
  236.     rowList0 = getRow(inList,Row)  
  237.     rowHead = rowList0[0]  
  238.     rowList = []  
  239.     for i in range(1,len(rowList0)):  
  240.         rowList.append(rowList0[i])  
  241.     rowmsg = {}  
  242.     j = 0  
  243.     for i in rowList:  
  244.         if rowmsg.has_key(i):  
  245.             rowmsg[i] = rowmsg[i] + 1  
  246.         else:  
  247.             rowmsg[i] = 1  
  248.     for i in rowmsg.keys():  
  249.         addList = []  
  250.         addList.append(i)  
  251.         for j in rowList:  
  252.             if j == i:  
  253.                 addList.append('1')  
  254.             else:  
  255.                 addList.append('0')  
  256.         addRow(inList,addList)  
  257.     for i in inList:  
  258.         print i  
  259.   
  260. def  minMax(inList):  
  261.     "最大最小归一化"  
  262.     innerList = []  
  263.     for i in range(1,len(inList)):  
  264.         if re.match(r'[0-9]+', inList[i]):  
  265.             innerList.append(float(inList[i]))  
  266.     maxvalue = max(innerList)  
  267.     minvalue = min(innerList)  
  268.   
  269.     for i in range(1,len(inList)):  
  270.         if re.match(r'[0-9]+', inList[i]):  
  271.             a = (float(inList[i])-minvalue)/(maxvalue - minvalue)  
  272.             b = "%.4f" %a  
  273.             inList[i] = str(b)  
  274.     return inList  
  275.   
  276. def  zScore(inList):  
  277.     "zScore归一化"  
  278.     print inList  
  279.     u = getAVG(inList)  
  280.     ave = getAVE(inList)  
  281.     stand = math.sqrt(ave)  
  282.     for i in range(1,len(inList)):  
  283.         if re.match(r'[0-9]+', inList[i]):  
  284.             a = (float(inList[i])-u)/stand  
  285.             b = "%.4f" % a  
  286.             inList[i] = str(b)  
  287.     return inList  
  288.   
  289. def similarityDistance(inList1,inList2,n):  
  290.     "距离相似度"  
  291.     sum = 0  
  292.     for i in range(1,len(inList1)):  
  293.        sum = sum + abs(float(inList1[i])-float(inList2[i])) ** n  
  294.     a = float(1)/2  
  295.     return pow(sum,a)  
  296.   
  297. def similaritySim(inList1,inList2):  
  298.     "余弦相似度计算"  
  299.     sum = 0  
  300.     for i in range(1,len(inList1)):  
  301.         sum = sum + float(inList1[i])*float(inList2[i])  
  302.     sum1 = 0  
  303.     sum2 = 0  
  304.     for i in range(1,len(inList1)):  
  305.         sum1 = sum1 + float(inList1[i])**2  
  306.     for i in range(1, len(inList2)):  
  307.         sum2 = sum2 + float(inList2[i]) ** 2  
  308.   
  309.     return sum/(math.sqrt(sum1)*math.sqrt(sum2))  
  310.   
  311. fileInput = fileREAD("D:\\PythonWorkSpace\\ExternalFile\\train.csv","r")  
  312.   
  313. # #获得某一行数据  
  314. # print getLine(fileInput,1)  
  315. #  
  316. # #获得某一列数据  
  317. # print getRow(fileInput,0)  
  318.   
  319. # #设置某一行数据  
  320. # print "设置前:"  
  321. # print getLine(fileInput,1)  
  322. # setLine(fileInput,getLine(fileInput,2),1)  
  323. # print "设置后:"  
  324. # print getLine(fileInput,1)  
  325.   
  326. # #设置某一列数据  
  327. # print "设置前:"  
  328. # print getRow(fileInput,1)  
  329. # setRow(fileInput,getRow(fileInput,2),1)  
  330. # print "设置后:"  
  331. # print getRow(fileInput,1)  
  332.   
  333. # #均值  
  334. # print getAVG(getRow(fileInput,9))  
  335.   
  336. # #方差  
  337. # print getAVE(getRow(fileInput,9))  
  338.   
  339. # #分位数  
  340. # print getQUANTILE(getRow(fileInput,9),0.5)  
  341.   
  342. # #噪声数据过滤1  
  343. # print removeNoiseAuto(getRow(fileInput,1))  
  344. #  
  345. # #噪声数据过滤2  
  346. # print removeNoiseByThresholdMin(getRow(fileInput,0),10)  
  347. #  
  348. # #噪声数据过滤3  
  349. # print removeNoiseByThresholdMax(getRow(fileInput,0),10)  
  350.   
  351. # #缺失值补全1  
  352. # print autoPaddingByAVG(getRow(fileInput,0))  
  353. #  
  354. # #缺失值补全2  
  355. # print autoPaddingByMedian(getRow(fileInput,0))  
  356.   
  357. # #等宽分箱  
  358. # print binningWidth(getRow(fileInput,0),3)  
  359. #  
  360. # #等频分箱  
  361. # print binningDeep(getRow(fileInput,0),3)  
  362.   
  363. # #ONE-HOT编码  
  364. # oneHot(fileInput,1)  
  365. # for i in fileInput:  
  366. #     print i  
  367.   
  368. # #最大最小归一化  
  369. # print minMax(getRow(fileInput,0))  
  370. #  
  371. # #zScore归一化  
  372. # print zScore(getRow(fileInput,0))  
  373.   
  374. # #距离相似度  
  375. # print similarityDistance(getRow(fileInput,0),getRow(fileInput,0),2)  
  376.   
  377. # # 余弦相似度计算  
  378. # print similaritySim(getRow(fileInput,0),getRow(fileInput,1))  



原文地址:http://blog.csdn.NET/u012155582/article/details/52051776

这篇关于python数据预处理练习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128283

相关文章

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

Python中@classmethod和@staticmethod的区别

《Python中@classmethod和@staticmethod的区别》本文主要介绍了Python中@classmethod和@staticmethod的区别,文中通过示例代码介绍的非常详细,对大... 目录1.@classmethod2.@staticmethod3.例子1.@classmethod

Python手搓邮件发送客户端

《Python手搓邮件发送客户端》这篇文章主要为大家详细介绍了如何使用Python手搓邮件发送客户端,支持发送邮件,附件,定时发送以及个性化邮件正文,感兴趣的可以了解下... 目录1. 简介2.主要功能2.1.邮件发送功能2.2.个性签名功能2.3.定时发送功能2. 4.附件管理2.5.配置加载功能2.6.