BP神经网络学习内容分享:前向传播与后向传播

2024-09-01 22:28

本文主要是介绍BP神经网络学习内容分享:前向传播与后向传播,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       在深度学习和神经网络领域,BP(Backpropagation,反向传播)神经网络是一种非常基础且广泛应用的网络结构。它通过前向传播进行预测,并通过反向传播算法调整网络权重以优化预测结果。本文将详细介绍BP神经网络的前向传播和反向传播过程,并展示一个简单的BP神经网络实现。

一、前向传播过程

        1.基本概念

        前向传播是神经网络中信息从输入层经过隐藏层到输出层的传递过程。在这个过程中,每一层的神经元接收前一层神经元的输出作为输入,并通过激活函数处理后输出给下一层。

        2.公式表示

        假设我们有一个简单的三层神经网络(输入层、一个隐藏层、输出层),每层神经元均使用Sigmoid激活函数。如图所示就是前向传播图:          (1)输入层到隐藏层

       其中,xi 是输入层第 i 个神经元的输出,wij 是从输入层第 i 个神经元到隐藏层第 j 个神经元的权重,bj 是隐藏层第 j 个神经元的偏置,zj 是隐藏层第 j 个神经元的线性组合输出,aj 是经过Sigmoid激活函数后的输出。

         (2)隐藏层到输出层

       过程与输入层到隐藏层类似,只是输入变为了隐藏层的输出aj。

           3.前向传播包括以下几个步骤:

         (1)将输入数据送入输入层,每个输入节点接收一个输入数据值。

         (2)将输入数据与输入层与隐藏层之间的连接权重相乘,并将结果加权求和,得到隐藏层神经元的输入值。

         (3)对隐藏层的输入值进行激活函数的处理,将其转化为隐藏层神经元的输出值。

         (4)重复步骤2和3,将隐藏层的输出值与隐藏层与输出层之间的连接权重相乘,并加权求和,得到输出层神经元的输入值。

        (5)对输出层的输入值进行激活函数的处理,将其转化为输出层神经元的输出值。

        (6)输出层的输出值即为BP网络对输入数据的预测结果。

二、反向传播算法

      1.链式法则

      反向传播算法的核心是链式法则,用于计算损失函数关于每个权重的梯度。如图所示反向传播计算:

       2.梯度下降

       梯度下降是一种优化算法,用于最小化损失函数。在BP神经网络中,我们通过反向传播算法计算梯度,然后使用梯度下降法更新权重。

       3.反向传播计算

       (1)计算输出层的误差

       其中,yk 是真实输出,ok 是网络预测输出。

       (2)计算隐藏层的误差

       (3)计算输出层的误差

        其中,η 是学习率。

        4.后向传播包括以下几个步骤:

       (1)计算网络输出层的误差,即预测值与真实值之间的差异。

       (2)根据误差计算输出层神经元的梯度,用于调整输出层与隐藏层之间的连接权重。

       (3)根据输出层梯度和隐藏层的输出值,计算隐藏层神经元的梯度,用于调整隐藏层与输入层之间的连接权重。

       (4)根据梯度和学习率,调整连接权重,使得误差最小化。

       (5)重复以上步骤,直到网络的预测结果达到预期或训练迭代次数达到设定值。

三、BP神经网络代码实现

        下面是一个简单的BP神经网络实现,使用Python编写,并手动计算权重更新。

import numpy as np  def sigmoid(x):  return 1 / (1 + np.exp(-x))  def sigmoid_derivative(x):  return x * (1 - x)  # 初始化参数  
input_size = 3  
hidden_size = 4  
output_size = 2  np.random.seed(1)  
weights_input_hidden = np.random.uniform(-1, 1, (input_size, hidden_size))  
weights_hidden_output = np.random.uniform(-1, 1, (hidden_size, output_size))  
bias_hidden = np.zeros(hidden_size)  
bias_output = np.zeros(output_size)  # 前向传播  
def forward_pass(X):  hidden_layer_input = np.dot(X, weights_input_hidden) + bias_hidden  hidden_layer_output = sigmoid(hidden_layer_input)  final_output_input = np.dot(hidden_layer_output, weights_hidden_output) + bias_output  final_output = sigmoid(final_output_input)  return final_output, hidden_layer_output  # 反向传播和权重更新  
def backward_pass(X, y, output, hidden_output):  # 计算输出层误差  output_error = y - output  d_output = output_error * sigmoid_derivative(output)  # 计算隐藏层误差  hidden_error = d_output.dot(weights_hidden_output.T) * sigmoid_derivative(hidden_output)  # 更新输出层权重和偏置  weights_hidden_output += hidden_output.T.dot(d_output) * 0.1  bias_output += np.sum(d_output, axis=0, keepdims=True) * 0.1  # 更新输入层到隐藏层权重和偏置  weights_input_hidden += X.T.dot(hidden_error) * 0.1  bias_hidden += np.sum(hidden_error, axis=0, keepdims=True) * 0.1  # 示例数据  
X = np.array([[0.1, 0.2, 0.3]])  
y = np.array([[0.9, 0.1]])  # 训练网络  
for _ in range(10000):  output, hidden_output = forward_pass(X)  backward_pass(X, y, output, hidden_output)  # 测试网络  
print("Output after training:", forward_pass(X)[0])

四、总结

        本文详细介绍了BP神经网络的前向传播和反向传播算法,并通过Python代码实现了一个简单的BP神经网络。通过不断迭代训练,网络能够逐渐优化其权重,从而提高预测的准确性。

这篇关于BP神经网络学习内容分享:前向传播与后向传播的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128218

相关文章

使用Python实现获取网页指定内容

《使用Python实现获取网页指定内容》在当今互联网时代,网页数据抓取是一项非常重要的技能,本文将带你从零开始学习如何使用Python获取网页中的指定内容,希望对大家有所帮助... 目录引言1. 网页抓取的基本概念2. python中的网页抓取库3. 安装必要的库4. 发送HTTP请求并获取网页内容5. 解

Python实现常用文本内容提取

《Python实现常用文本内容提取》在日常工作和学习中,我们经常需要从PDF、Word文档中提取文本,本文将介绍如何使用Python编写一个文本内容提取工具,有需要的小伙伴可以参考下... 目录一、引言二、文本内容提取的原理三、文本内容提取的设计四、文本内容提取的实现五、完整代码示例一、引言在日常工作和学

Python解析器安装指南分享(Mac/Windows/Linux)

《Python解析器安装指南分享(Mac/Windows/Linux)》:本文主要介绍Python解析器安装指南(Mac/Windows/Linux),具有很好的参考价值,希望对大家有所帮助,如有... 目NMNkN录1js. 安装包下载1.1 python 下载官网2.核心安装方式3. MACOS 系统安

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Java嵌套for循环优化方案分享

《Java嵌套for循环优化方案分享》介绍了Java中嵌套for循环的优化方法,包括减少循环次数、合并循环、使用更高效的数据结构、并行处理、预处理和缓存、算法优化、尽量减少对象创建以及本地变量优化,通... 目录Java 嵌套 for 循环优化方案1. 减少循环次数2. 合并循环3. 使用更高效的数据结构4

SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)

《SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)》本文介绍了如何在SpringBoot项目中使用Jasypt对application.yml文件中的敏感信息(如数... 目录SpringBoot使用Jasypt对YML文件配置内容进行加密(例:数据库密码加密)前言一、J

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.