NumPy实现线性回归

2024-09-01 17:04
文章标签 实现 回归 线性 numpy

本文主要是介绍NumPy实现线性回归,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 单变量线性回归

1.1 sklearn实现(最小二乘法)

import osimport pandas as pd
import matplotlib.pyplot as plt
import syscurrent_dir=os.getcwd()
path=current_dir+'\\'+"Salary Data.csv"def plot_data(path):table=pd.read_csv(path)experience = table["Experience Years"]salary = table["Salary"]plt.figure(figsize=(8,6))plt.scatter(experience,salary,color="blue",label="Data points")plt.title("experience vs year")plt.xlabel("Experience (Years)")plt.ylabel("Salary")plt.grid(True)plt.legend()plt.show()
plot_data(path)table=pd.read_csv(path)
y=table['Salary']
x=table[ ['Experience Years'] ]  # x.shape=(40,1)
z=table['Experience Years']    # z.shape=(40,)from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,train_size=0.7,random_state=2529)
# (28, 1) (28,) (12, 1) (12,)from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(x_train,y_train)print( model.intercept_ )  # 26596.961311068262
print( model.coef_ )       # [9405.61663234]from sklearn.metrics import mean_squared_error, r2_score
y_pred = model.predict(x_test)mse = mean_squared_error(y_test, y_pred)
print( "mse = ", mse )          # 24141421.671440993
r2 = r2_score(y_test, y_pred)
print( "r2 = ", r2 )            # 0.960233432146844y_whole_pred=model.predict(x)
# x.iloc[:,0]可以写成x, 或者x["Experience Years"]
plt.scatter(x.iloc[:,0],y,color="blue",label="Data points")
plt.plot(x,y_whole_pred,color="red",linewidth=2, label='linear regression')plt.xlabel("Experience (Years)")
plt.ylabel("Salary")
plt.legend()
plt.show()

1.2 NumPy实现(梯度下降法)

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
from sklearn.model_selection import train_test_split
import sysdef plot_data(path):table=pd.read_csv(path)experience = table["Experience Years"]salary = table["Salary"]plt.figure(figsize=(8,6))plt.scatter(experience,salary,color="blue",label="Data points")plt.title("experience vs year")plt.xlabel("Experience (Years)")plt.ylabel("Salary")plt.grid(True)plt.legend()plt.show()class MyLinearReg:def __init__(self,lr = 0.01, epochs = 1000):self.lr = lrself.epochs = epochsself.w = Noneself.b = Noneself.loss_history = []def fit(self,X,y):m,n = X.shapeself.w = np.zeros(n)self.b = 0for epoch in range(self.epochs):# x(m,n) * w(n,), numpy广播机制矩阵向量乘法y_pred = X @ self.w + self.b  # y_pred(m,)loss = (y_pred - y)           # loss(m,)dcost_dw = (1/m) * (X.T @ loss)dcost_b = (1/m) *  lossdcost_b = np.sum(dcost_b)self.w -= self.lr * dcost_dwself.b -= self.lr * dcost_bsquare_loss = (y_pred-y)**2mean_loss = np.mean(square_loss)self.loss_history.append(mean_loss)if epoch % 100 == 99 :print(f"Epoch {epoch} loss: {mean_loss}")print("Trainning finished.")print("Final parameters:","Slope w=",self.w," Bias b=",self.b)# Final parameters: Slope w= [9853.19132896]  Bias b= 23780.770014707407def predict(self,X):return X @ self.w + self.bdef get_params(self):return self.w, self.b# plot_data(path)
current_dir=os.getcwd()
path=current_dir+'\\'+"Salary Data.csv"
table=pd.read_csv(path)
x = table["Experience Years"].values # x(40,)
y = table["Salary"].values           # y(40,)
#(32,),(8,)(32,)(8,)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
# (32,) (32,) (8,) (8,)x_train=x_train.reshape(-1,1)
x_test=x_test.reshape(-1,1)
model = MyLinearReg()
model.fit(x_train, y_train)y_pred = model.predict(x_test)from sklearn.metrics import mean_squared_error, r2_scoremse = mean_squared_error(y_test, y_pred)
print( "mse = ", mse )          # mse =  43053815.910611115
r2 = r2_score(y_test, y_pred)
print( "r2 = ", r2 )           # r2 =  0.9165907194371214X=x.reshape(-1,1)
y_whole_pred=model.predict(X)
# x.iloc[:,0]可以写成x, 或者x["Experience Years"]
plt.scatter(x,y,color="blue",label="Data points")
plt.plot(x,y_whole_pred,color="red",linewidth=2, label='linear regression')plt.xlabel("Experience (Years)")
plt.ylabel("Salary")
plt.legend()
plt.show()
Epoch 99 loss: 111815444.20061775
Epoch 199 loss: 81534511.03025383
Epoch 299 loss: 61760636.04682423
Epoch 399 loss: 48848017.74472436
Epoch 499 loss: 40415896.49608463
Epoch 599 loss: 34909602.800390095
Epoch 699 loss: 31313915.621658318
Epoch 799 loss: 28965881.353634194
Epoch 899 loss: 27432581.973080143
Epoch 999 loss: 26431315.92580659
Trainning finished.
Final parameters: Slope w= [9853.19132896]  Bias b= 23780.770014707407
mse =  43053815.910611115
r2 =  0.9165907194371214

2 多变量线性回归

2.1 sklearn实现(最小二乘法)

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import os
import sysdef draw_PairwiseScatter(x,y):num_features = x.shape[1]plt.figure(figsize=(15,10))for i in range(num_features):plt.subplot(3,5,i+1) # 子图的索引从1开始plt.scatter(x[:,i],y,marker='o', color="green", s=15,alpha=0.5)plt.xlabel("Feature {}".format(i+1))plt.ylabel("Label")plt.title("Featurs {} vs Target".format(i+1))plt.tight_layout()plt.show()
def draw_real_pred(x,y,model):y_pred_whole =  model.predict(x)num_features = x.shape[1]plt.figure( figsize=(15,10) )for i in range(num_features):plt.subplot(3,5,i+1)plt.scatter(x[:,i],y,marker='o',color="green", s=15,alpha=0.5)plt.scatter(x[:,i],y_pred_whole,marker="o", color="red", s=15,alpha=0.5)plt.xlabel("Feature {}".format(i+1))plt.ylabel("Label")plt.title("Featurs {} vs Target".format(i+1))plt.tight_layout()plt.show()current_dir = os.getcwd()
path = current_dir + '\\' + "Boston.csv"
house = pd.read_csv(path)y = house['MEDV']                           #  (506,)
X = house.drop(['MEDV'], axis = 1)   #  (506,13)
X=np.array(X)
y=np.array(y)draw_PairwiseScatter(X,y)from sklearn.linear_model import LinearRegression
model = LinearRegression()from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(X, y, train_size = 0.7, random_state = 2529)
#     (354, 13) (152, 13) (354,) (152,)# Ordinary Least Squares 不是梯度下降,不用标准化数据
# theta = (X.T * X)-1 * X.T * y: 最小二乘法
model.fit(x_train,y_train)
print(model.intercept_)
print(model.coef_)y_pred = model.predict(x_test)from sklearn.metrics import  mean_absolute_error, r2_score
print( "mean_absolute_error(y_pred,y_test):", mean_absolute_error(y_pred,y_test) )print ( model.score(x_test,y_test) )
r2 = r2_score(y_test, y_pred)
print(r2)  # 0.6551914852365524draw_real_pred(X,y,model)

2.2 NumPy实现(梯度下降法) 

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import os
import sysdef draw_PairwiseScatter(x,y):num_features = x.shape[1]plt.figure(figsize=(15,10))for i in range(num_features):plt.subplot(3,5,i+1)plt.scatter(x[:,i],y,marker='o', color="green", s=15,alpha=0.5)plt.xlabel("Feature {}".format(i+1))plt.ylabel("Label")plt.title("Featurs {} vs Target".format(i+1))plt.tight_layout()plt.show()def draw_real_pred(x,y,model):y_pred_whole =  model.predict(x)num_features = x.shape[1]plt.figure(figsize=(15,10))for i in range(num_features):plt.subplot(3,5,i+1)plt.scatter(x[:,i],y,marker='o',color="green", s=15,alpha=0.5)plt.scatter(x[:,i],y_pred_whole,marker='o', color="red", s=15,alpha=0.5)plt.xlabel("Feature {}".format(i+1))plt.ylabel("Label")plt.title("Featurs {} vs Target".format(i+1))plt.tight_layout()plt.show()class MultipleLinear:def __init__(self,learning_rate=0.01, epochs=1000):self.learning_rate = learning_rateself.epochs = epochsself. theta = Noneself.cost_history = Nonedef fit(self,X,y):X = np.hstack( ( np.ones((X.shape[0],1)), X ) )m,n = X.shapeself.theta = np.zeros(n)self.cost_history = []for epoch in range(self.epochs):y_pred = X @ self.thetagradient = X.T @ (y_pred - y)self.theta -= self.learning_rate * gradient * (1/m)cost = self.compute_cost(X,y)self.cost_history.append(cost)if epoch % 100 == 99:print(f"Epoch {epoch} cost: {cost}")print("Training complete")print ( self.theta )def predict(self,X):m,n = X.shapeX = np.hstack( (np.ones((m,1)), X) )return  X @ self.thetadef compute_cost(self,X,y):m = X.shape[0]y_pred = X @ self.thetasq_errors = (y_pred - y)**2cost = 1 / (2 * m) * np.sum(sq_errors)return costcurrent_dir = os.getcwd()
path = current_dir + '\\' + "Boston.csv"
house = pd.read_csv(path)y = house['MEDV']                           #  (506,)
X = house.drop(['MEDV'], axis = 1)   #  (506,13)
X=np.array(X)
y=np.array(y)draw_PairwiseScatter(X,y)from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# (404, 13) (102, 13) (404,) (102,)from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)  # (404,13)
x_test_scaled = scaler.transform(x_test)        # (102,13)model = MultipleLinear()
model.fit(x_train_scaled, y_train)y_pred = model.predict(x_test_scaled)from sklearn.metrics import  r2_score
r2 = r2_score(y_test,y_pred)
print("r2 = ",r2)       # r2 =  0.6543244875135051draw_real_pred(X,y,model)

这篇关于NumPy实现线性回归的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1127533

相关文章

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

Golang如何用gorm实现分页的功能

《Golang如何用gorm实现分页的功能》:本文主要介绍Golang如何用gorm实现分页的功能方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景go库下载初始化数据【1】建表【2】插入数据【3】查看数据4、代码示例【1】gorm结构体定义【2】分页结构体