算法专利复现_基于ngboost和SHAP值可解释预测方法

2024-09-01 16:36

本文主要是介绍算法专利复现_基于ngboost和SHAP值可解释预测方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,我是重庆未来之智的Toby老师,最近看到一篇专利,名称是《基于NGBoost和SHAP值的可解释地震动参数概率密度分布预测方法》。该专利申请工日是2021年3月2日。

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

专利复现

我看了这专利申请文案后,文章整体布局和文字内容结构不错,就是创新点半天找不到。我们公司之前申请专利至少还有算法创新点,不由感叹现在专利局审核尺度也太松弛了。

ngboost是2019年出来的算法,SHAP是博弈论中经典算法。两者组合还算不错,今天就为大家复现基于ngboost和SHAP值可解释预测方法。

NGboost概述

NGBoost(Natural Gradient Boosting)是一种基于梯度提升框架的集成学习算法,它通过自然梯度优化来更新模型参数。NGBoost结合了梯度提升决策树(GBDT)的预测能力与自然梯度的优化优势,尤其在处理高维数据和复杂模型时表现出色。

斯坦福 ML Group最近在他们的论文 Duan et al., 2019 中发表了一种新算法,其实现称为 NGBoost。该算法通过使用自然梯度将不确定性估计包括在梯度提升中。这篇文章试图理解这个新算法,并与其他流行的增强算法 LightGBM 和 XGboost 进行比较,看看它在实践中是如何工作的。

斯坦福ngboost官网如下
https://stanfordmlgroup.github.io/projects/ngboost/

图片

自然梯度使学习高效且有效

什么是自然梯度提升?

NGBoost 是一种新的提升算法,它使用自然梯度提升,一种用于概率预测的模块化提升算法。该算法由基学习器、参数概率分布和评分规则组成。

图片

图片

普通梯度可能非常不适合学习多参数概率分布(例如正态分布)。如上面的概率回归示例所示,使用自然梯度的训练动态往往更加稳定并产生更好的拟合。

在不确定性估计和传统指标方面的竞争表现

与竞争方法相比,NGBoost 所需的专业知识要少得多,并且在常见的基准测试中表现同样出色。NGBoost 在较小的数据集上具有特别强的性能。

图片

在一个回归模型的实验中,我们发现ngboost获得更低的rmse.

图片

SHAP概述


SHAP(SHapley Additive exPlanations)是一种解释机器学习模型预测的方法,它基于博弈论中的Shapley值概念。SHAP值提供了一种公平的方法来量化每个特征对模型预测结果的贡献。以下是SHAP的关键特点和概述:

  1. 基于Shapley值

    • SHAP值基于Shapley值,这是一种在合作游戏中分配支付的标准方法,确保每个玩家(在这里是特征)获得其“公平”的份额。

  2. 可解释性

    • SHAP值提供了一种直观的方式来理解模型的预测,通过分解预测结果并将其归因于各个特征。

  3. 特征贡献度量

    • 对于给定的预测,SHAP值可以量化每个特征对预测结果的正面或负面影响。

  4. 一致性和公平性

    • SHAP值满足一致性、公平性等博弈论的公理,确保了特征贡献的合理分配。

  5. 多种模型支持

    • SHAP可以解释多种类型的机器学习模型,包括决策树、随机森林、梯度提升机、线性模型、深度神经网络等。

  6. 可视化工具

    • SHAP提供了丰富的可视化工具,如力导向图(force plot)和汇总图(summary plot),帮助用户直观地理解模型预测。

  7. Python实现

    • SHAP有Python库支持,可以方便地集成到现有的Python机器学习工作流程中。

  8. 交互式解释

    • SHAP值的计算可以是交互式的,允许用户探索不同特征组合对模型预测的影响。

  9. 适用于复杂模型

    • 尽管SHAP值的计算对于复杂的模型可能很耗时,但它提供了一种强大的方法来解释这些模型的决策过程。

  10. 理论和实践结合

    • SHAP结合了理论基础和实际应用,使得即使是非技术背景的用户也能够理解模型的工作原理。

  11. 开源和社区支持

    • SHAP是一个开源项目,得到了数据科学和机器学习社区的广泛支持。

SHAP值是解释机器学习模型的重要工具,尤其适用于需要模型透明度和可解释性的场景。通过SHAP值,研究人员和实践者可以更好地理解模型的行为,提高模型的信任度,并做出更明智的决策。

专利复现-基于ngboost和SHAP值可解释预测方法

前期理论知识给大家说清楚了,现在Toby老师用15万真实金融风控数据来复现基于ngboost和SHAP值可解释预测方法。下图是建模数据集,模型通过喂养数据,训练数据,最终生成具有预测能力的AI大模型。

图片

下图是我方已经建立好ngboost预测模型。

图片

下图是我方计算的SHAP values值。

图片

通过SHAP values值,我们计算变量重要性,并从大到小排序。如下图,SHAP+ngboost分析得出Revolving Utilization of Unsecured Lines变量是最重要变量。

"Revolving Utilization of Unsecured Lines"(未担保循环信用额度的使用率)是一个金融术语,通常用于个人信用报告和信贷分析中。它指的是借款人在循环信用账户(如信用卡)上使用的信用额度与可获得的总信用额度的比例。

该变量计算公式=(当期未偿还余额 / 信用额度上限) * 100%。

Revolving Utilization of Unsecured Lines对信用评分有重要影响:

该变量高使用率可能会对个人的信用评分产生负面影响,因为这表明借款人可能面临较高的财务压力。

金融机构和贷款人使用这一指标来评估借款人的信用风险。较高的使用率可能表明借款人依赖信贷来维持消费,这可能增加违约风险。

借款人可以通过降低使用率来提高信用评分,例如通过支付下账单或要求提高信用额度。

图片

SHAP除了横向比较变量重要性,还可以纵向分析变量解释性。如下图,Revolving Utilization of Unsecured Lines值越高,SHAP值越高,违约风险也相应提高,反之亦然。age年龄分析得到相反结论,年龄越小信用风险越高,反之亦然。

图片

如果是金融小白不懂风控,不懂编程,不懂金融,不懂业务,没时间学习没有关系。重庆未来之智信息技术咨询服务有限公司帮助用户设计好零基础操作界面。审批人员无需风控建模知识,无需编程知识,只需要输入用户信息,鼠标点击预测,工具就为显示预测结果。接下来为大家展示。

图片

该功能对小白友好,可以增强该专利的功能。

算法专利复现_基于ngboost和SHAP值可解释预测方法 就为大家介绍到这里,有商务需求的可以留言联系。

版权声明:文章来自公众号(python风控模型),未经许可,不得抄袭。遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
 

这篇关于算法专利复现_基于ngboost和SHAP值可解释预测方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1127472

相关文章

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

html5的响应式布局的方法示例详解

《html5的响应式布局的方法示例详解》:本文主要介绍了HTML5中使用媒体查询和Flexbox进行响应式布局的方法,简要介绍了CSSGrid布局的基础知识和如何实现自动换行的网格布局,详细内容请阅读本文,希望能对你有所帮助... 一 使用媒体查询响应式布局        使用的参数@media这是常用的

Spring 基于XML配置 bean管理 Bean-IOC的方法

《Spring基于XML配置bean管理Bean-IOC的方法》:本文主要介绍Spring基于XML配置bean管理Bean-IOC的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录一. spring学习的核心内容二. 基于 XML 配置 bean1. 通过类型来获取 bean2. 通过

基于Python实现读取嵌套压缩包下文件的方法

《基于Python实现读取嵌套压缩包下文件的方法》工作中遇到的问题,需要用Python实现嵌套压缩包下文件读取,本文给大家介绍了详细的解决方法,并有相关的代码示例供大家参考,需要的朋友可以参考下... 目录思路完整代码代码优化思路打开外层zip压缩包并遍历文件:使用with zipfile.ZipFil

Python处理函数调用超时的四种方法

《Python处理函数调用超时的四种方法》在实际开发过程中,我们可能会遇到一些场景,需要对函数的执行时间进行限制,例如,当一个函数执行时间过长时,可能会导致程序卡顿、资源占用过高,因此,在某些情况下,... 目录前言func-timeout1. 安装 func-timeout2. 基本用法自定义进程subp

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

电脑死机无反应怎么强制重启? 一文读懂方法及注意事项

《电脑死机无反应怎么强制重启?一文读懂方法及注意事项》在日常使用电脑的过程中,我们难免会遇到电脑无法正常启动的情况,本文将详细介绍几种常见的电脑强制开机方法,并探讨在强制开机后应注意的事项,以及如何... 在日常生活和工作中,我们经常会遇到电脑突然无反应的情况,这时候强制重启就成了解决问题的“救命稻草”。那