江大白 | 大模型时代,CV目标检测任务,会走向何方?

2024-09-01 11:36

本文主要是介绍江大白 | 大模型时代,CV目标检测任务,会走向何方?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文来源公众号“江大白”,仅用于学术分享,侵权删,干货满满。

原文链接:大模型时代,CV目标检测任务,会走向何方?

以下文章来源于知乎:深度眸

作者:深度眸

编辑:极市平台

链接:https://zhuanlan.zhihu.com/p/663703934

本文仅用于学术分享,如有侵权,请联系后台作删文处理

导读

目标检测现在都在干啥?大模型时代都有哪些思考?本文细数从常见的目标检测到现在MLLM盛行的时代,和Object Detection的任务以及近期涌现的新任务。如果读者也做目标检测,这篇文章很适合您拓宽思路!

1 Object Detection

经典目标检测大家应该非常熟悉了,一般指的就是闭集固定类别的检测。

2 Open Set/Open World/OOD

这个任务是指在实际应用上可以检测任何前景物体,但是有些不需要预测类别,只要检测出框就行。在很多场合也有应用场景,有点像类无关的增量训练。

unknown 就是模型预测的不知道类别的检测结果。

3 Open Vocabulary

也是开放集任务,相比于 open set,需要知道不在训练集类别中的新预测物体类别。这类模型通常都需要接入文本作为一个模态输入,因为开放词汇目标检测的定义就是给定任意词汇都可以检测出来。

训练时候通常是要确保训练集和测试集的类别不能重复,否则就是信息泄露了,但是训练和测试集图片是否重复其实也没有强制限制。

可以看出 OVD 任务更加贴合实际应用,文本的描述不会有很大限制,同一个物体你可以采用多种词汇描述都可以检测出来。OVD 任务是一个比较实用的,但是目前还没有出现开源的超级强的 OVD 算法(这个超强是指的对比 SAM 来说,极强的 open 检测能力)

4 Phrase Grounding

这个任务也叫做 phrase localization。给定名词短语,输出对应的单个或多个物体检测框。如果是输入一句话,那么就是定位这句话中包括的所有名词短语。在 GLIP 得到了深入的研究。

从上图可以看出,Phrase Grounding 任务是包括了 OVD 任务的。常见的评估数据集是 Flickr30k Entities

5 Referring Expression Comprehension

简称 REC,有时候也称为 visual grounding。给定图片和一句话,输出对应的物体坐标,通常就是单个检测框。

常用的是 RefCOCO/RefCOCO+/RefCOCOg 三个数据集。是相对比较简单的数据集。这个任务侧重理解。

6 Description Object Detection

描述性目标检测也可以称为广义 Referring Expression Comprehension。为何叫做广义,这就要说道目前常用的

Referring Expression Comprehension 存在的问题了:

  1. REC 数据集通常都是指代一个物体,不太符合实际

  2. REC 数据集没有负样本,也就是每句话一定对应了图片中的物体,这样训练的模型会存在很大的幻觉

  3. REC 数据集通常都是正向描述,例如上图的一条在图片左边的狗,但是没有反向描述,例如一条没有被绳子牵引着在外面的狗

基于此,Described Object Detection 论文提出了这个新的数据集,命名为 DOD。类似还有 gRefCOCO

其实还有一个更细致的任务叫做 :Open-Vocabulary Visual Grounding 和 Open-Vocabulary Phrase Grounding,来自论文 OV-VG

可以看出这个任务重点是想特意区分类别泄露问题,但是由于大数据集训练时代,这个情况是无法避免的。

7 Caption with Grounding

这个任务的含义是:给定图片,要求模型输出图片描述,同时对于其中的短语都要给出对应的 bbox

有点像 Phrase Grounding 的反向过程。这个任务可以方便将输出的名称和 bbox 联系起来,方便后续任务的进行。

8 Reasoning Intention-Oriented Object Detection

意图导向的目标检测,和之前的 DetGPT 提出的推理式检测,我感觉非常类似。

DetGPT 中的推理式检测含义是:给定文本描述,模型要能够进行推理,得到用户真实意图。

例如 我想喝冷饮,LLM 会自动进行推理解析输出 冰箱 这个单词,从而可以通过 Grounding 目标检测算法把冰箱检测出来。模型具备推理功能。

而 RIO 我觉得也是一样,来自论文 RIO: A Benchmark for Reasoning Intention-Oriented Objects in Open Environments,想做的事情也是一样

9 基于区域输入的理解和 Grounding

这个是一个非常宽泛的任务,表示不仅可以输入图文模态,还可以输入其他任意你能想到的模态,然后进行理解或者定位相关任务。

最经典的任务是 Referring expression generation:给定图片和单个区域,对该区域进行描述。常用的评估数据集是 RefCOCOg

现在也有很多新的做法,典型的如 Shikra 里面提到的 Referential dialogue,包括 REC,REG,PointQA,Image Caption 以及 VQA 5 个任务

Apple 也提出了新的可交互的设计

其实文本、bbox 和图片配合,还可以实现很多任务,但是由于都是比较特殊或者不是很主流,这里就没有写了。

10 结尾

可能还漏掉了一些,欢迎大家留言评论。后续可以讲讲这些任务应该如何解决?每个任务到底是咋评测的,通常的做法是咋样的。

现在都是大数据训练时代,评测虽然非常有用,但是很难避免数据泄露问题,如果作者不开源,你根本无法知道到底是模型性能还是数据泄露,这个一个值得思考的问题...,而这个问题也很难解,因为作者不开源,你也没有精力去做复现...

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

这篇关于江大白 | 大模型时代,CV目标检测任务,会走向何方?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126826

相关文章

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

Spring Boot 整合 ShedLock 处理定时任务重复执行的问题小结

《SpringBoot整合ShedLock处理定时任务重复执行的问题小结》ShedLock是解决分布式系统中定时任务重复执行问题的Java库,通过在数据库中加锁,确保只有一个节点在指定时间执行... 目录前言什么是 ShedLock?ShedLock 的工作原理:定时任务重复执行China编程的问题使用 Shed

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe