江大白 | 大模型时代,CV目标检测任务,会走向何方?

2024-09-01 11:36

本文主要是介绍江大白 | 大模型时代,CV目标检测任务,会走向何方?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文来源公众号“江大白”,仅用于学术分享,侵权删,干货满满。

原文链接:大模型时代,CV目标检测任务,会走向何方?

以下文章来源于知乎:深度眸

作者:深度眸

编辑:极市平台

链接:https://zhuanlan.zhihu.com/p/663703934

本文仅用于学术分享,如有侵权,请联系后台作删文处理

导读

目标检测现在都在干啥?大模型时代都有哪些思考?本文细数从常见的目标检测到现在MLLM盛行的时代,和Object Detection的任务以及近期涌现的新任务。如果读者也做目标检测,这篇文章很适合您拓宽思路!

1 Object Detection

经典目标检测大家应该非常熟悉了,一般指的就是闭集固定类别的检测。

2 Open Set/Open World/OOD

这个任务是指在实际应用上可以检测任何前景物体,但是有些不需要预测类别,只要检测出框就行。在很多场合也有应用场景,有点像类无关的增量训练。

unknown 就是模型预测的不知道类别的检测结果。

3 Open Vocabulary

也是开放集任务,相比于 open set,需要知道不在训练集类别中的新预测物体类别。这类模型通常都需要接入文本作为一个模态输入,因为开放词汇目标检测的定义就是给定任意词汇都可以检测出来。

训练时候通常是要确保训练集和测试集的类别不能重复,否则就是信息泄露了,但是训练和测试集图片是否重复其实也没有强制限制。

可以看出 OVD 任务更加贴合实际应用,文本的描述不会有很大限制,同一个物体你可以采用多种词汇描述都可以检测出来。OVD 任务是一个比较实用的,但是目前还没有出现开源的超级强的 OVD 算法(这个超强是指的对比 SAM 来说,极强的 open 检测能力)

4 Phrase Grounding

这个任务也叫做 phrase localization。给定名词短语,输出对应的单个或多个物体检测框。如果是输入一句话,那么就是定位这句话中包括的所有名词短语。在 GLIP 得到了深入的研究。

从上图可以看出,Phrase Grounding 任务是包括了 OVD 任务的。常见的评估数据集是 Flickr30k Entities

5 Referring Expression Comprehension

简称 REC,有时候也称为 visual grounding。给定图片和一句话,输出对应的物体坐标,通常就是单个检测框。

常用的是 RefCOCO/RefCOCO+/RefCOCOg 三个数据集。是相对比较简单的数据集。这个任务侧重理解。

6 Description Object Detection

描述性目标检测也可以称为广义 Referring Expression Comprehension。为何叫做广义,这就要说道目前常用的

Referring Expression Comprehension 存在的问题了:

  1. REC 数据集通常都是指代一个物体,不太符合实际

  2. REC 数据集没有负样本,也就是每句话一定对应了图片中的物体,这样训练的模型会存在很大的幻觉

  3. REC 数据集通常都是正向描述,例如上图的一条在图片左边的狗,但是没有反向描述,例如一条没有被绳子牵引着在外面的狗

基于此,Described Object Detection 论文提出了这个新的数据集,命名为 DOD。类似还有 gRefCOCO

其实还有一个更细致的任务叫做 :Open-Vocabulary Visual Grounding 和 Open-Vocabulary Phrase Grounding,来自论文 OV-VG

可以看出这个任务重点是想特意区分类别泄露问题,但是由于大数据集训练时代,这个情况是无法避免的。

7 Caption with Grounding

这个任务的含义是:给定图片,要求模型输出图片描述,同时对于其中的短语都要给出对应的 bbox

有点像 Phrase Grounding 的反向过程。这个任务可以方便将输出的名称和 bbox 联系起来,方便后续任务的进行。

8 Reasoning Intention-Oriented Object Detection

意图导向的目标检测,和之前的 DetGPT 提出的推理式检测,我感觉非常类似。

DetGPT 中的推理式检测含义是:给定文本描述,模型要能够进行推理,得到用户真实意图。

例如 我想喝冷饮,LLM 会自动进行推理解析输出 冰箱 这个单词,从而可以通过 Grounding 目标检测算法把冰箱检测出来。模型具备推理功能。

而 RIO 我觉得也是一样,来自论文 RIO: A Benchmark for Reasoning Intention-Oriented Objects in Open Environments,想做的事情也是一样

9 基于区域输入的理解和 Grounding

这个是一个非常宽泛的任务,表示不仅可以输入图文模态,还可以输入其他任意你能想到的模态,然后进行理解或者定位相关任务。

最经典的任务是 Referring expression generation:给定图片和单个区域,对该区域进行描述。常用的评估数据集是 RefCOCOg

现在也有很多新的做法,典型的如 Shikra 里面提到的 Referential dialogue,包括 REC,REG,PointQA,Image Caption 以及 VQA 5 个任务

Apple 也提出了新的可交互的设计

其实文本、bbox 和图片配合,还可以实现很多任务,但是由于都是比较特殊或者不是很主流,这里就没有写了。

10 结尾

可能还漏掉了一些,欢迎大家留言评论。后续可以讲讲这些任务应该如何解决?每个任务到底是咋评测的,通常的做法是咋样的。

现在都是大数据训练时代,评测虽然非常有用,但是很难避免数据泄露问题,如果作者不开源,你根本无法知道到底是模型性能还是数据泄露,这个一个值得思考的问题...,而这个问题也很难解,因为作者不开源,你也没有精力去做复现...

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

这篇关于江大白 | 大模型时代,CV目标检测任务,会走向何方?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126826

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU