NASA数据集:50 m分辨率的雪水当量(SWE)地图的集合

2024-09-01 09:20

本文主要是介绍NASA数据集:50 m分辨率的雪水当量(SWE)地图的集合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ASO L4 Lidar Snow Water Equivalent 50m UTM Grid V001

ASO L4 激光雷达雪水当量 50 米UTM 网格,第 1 版

简介

该数据集包含 50 米网格雪水当量 (SWE) 值,是 NASA/JPL 机载雪地观测站 (ASO) 飞机勘测活动的一部分。 这些数据来自 ASO L4 Lidar Snow Depth 50m UTM Grid 数据产品和模型雪密度。

参数:SNOW WATER EQUIVALENT 平台:DHC-6,King Air 传感器:Riegl LMS-Q1560 数据格式:GeoTIFF,PNG 时间覆盖范围:2013 年 4 月 3 日至 2019 年 7 月 16 日 时间分辨率:
空间分辨率: 50 m 50 m 空间参考系: WGS 84 / UTM zone 10NEPSG:32610 WGS 84 / UTM zone 11NEPSG:32611 WGS 84 / UTM zone 12NEPSG:32612 WGS 84 / UTM zone 13NEPSG:32613

摘要

该数据集是50 m分辨率的雪水当量(SWE)地图的集合,测量方法为 机载雪天文台(AsO),一个耦合成像光谱仪和扫描激光雷达系统 由NASA/JPL创建。成像光谱仪用于量化光谱脉冲、宽带 雷诺数,以及雪中灰尘和黑碳的辐射强迫。扫描激光雷达测量雪 使用差测高法减去无雪网格海拔数据的深度 积雪覆盖的网格化海拔数据(Deems等人,2013年)。原来3 m的雪深 ASO L4激光雷达雪深3 m UTM网格数据集中提供的测量结果如下 用于汇总ASO L4 Lidar SnowDepth 50 m UTM中的50 m网格化雪深度数据 网格数据集。为了推断此处提供的SWE数据,合并了50 m雪深数据 雪密度由iSnobal建模,这是一种基于网格分布的、基于物理的能量平衡 模型

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassifyimport pandas as pd
import leafmapurl = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
dfleafmap.nasa_data_login()results, gdf = leafmap.nasa_data_search(short_name="SO_50M_SWE",cloud_hosted=True,bounding_box=(-118.4259857, 37.37399023, -118.4109694, 37.39260287),temporal=("2013-04-03", "2019-07-16"),count=-1,  # use -1 to return all datasetsreturn_gdf=True,
)gdf.explore()#leafmap.nasa_data_download(results[:5], out_dir="data")

引用

Painter, T. (2018). ASO L4 Lidar Snow Water Equivalent 50m UTM Grid, Version 1 [Data Set]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/M4TUH28NHL4Z. Date Accessed 08-25-2024.

网址推荐

0代码在线构建地图应用

https://www.mapmost.com/#/?source_inviter=CnVrwIQs

机器学习

https://www.cbedai.net/xg 

这篇关于NASA数据集:50 m分辨率的雪水当量(SWE)地图的集合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126536

相关文章

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

Mybatis拦截器如何实现数据权限过滤

《Mybatis拦截器如何实现数据权限过滤》本文介绍了MyBatis拦截器的使用,通过实现Interceptor接口对SQL进行处理,实现数据权限过滤功能,通过在本地线程变量中存储数据权限相关信息,并... 目录背景基础知识MyBATis 拦截器介绍代码实战总结背景现在的项目负责人去年年底离职,导致前期规

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

基于Redis有序集合实现滑动窗口限流的步骤

《基于Redis有序集合实现滑动窗口限流的步骤》滑动窗口算法是一种基于时间窗口的限流算法,通过动态地滑动窗口,可以动态调整限流的速率,Redis有序集合可以用来实现滑动窗口限流,本文介绍基于Redis... 滑动窗口算法是一种基于时间窗口的限流算法,它将时间划分为若干个固定大小的窗口,每个窗口内记录了该时间

SpringBoot整合Canal+RabbitMQ监听数据变更详解

《SpringBoot整合Canal+RabbitMQ监听数据变更详解》在现代分布式系统中,实时获取数据库的变更信息是一个常见的需求,本文将介绍SpringBoot如何通过整合Canal和Rabbit... 目录需求步骤环境搭建整合SpringBoot与Canal实现客户端Canal整合RabbitMQSp

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核

Nacos集群数据同步方式

《Nacos集群数据同步方式》文章主要介绍了Nacos集群中服务注册信息的同步机制,涉及到负责节点和非负责节点之间的数据同步过程,以及DistroProtocol协议在同步中的应用... 目录引言负责节点(发起同步)DistroProtocolDistroSyncChangeTask获取同步数据getDis