本文主要是介绍NASA数据集:50 m分辨率的雪水当量(SWE)地图的集合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
ASO L4 Lidar Snow Water Equivalent 50m UTM Grid V001
ASO L4 激光雷达雪水当量 50 米UTM 网格,第 1 版
简介
该数据集包含 50 米网格雪水当量 (SWE) 值,是 NASA/JPL 机载雪地观测站 (ASO) 飞机勘测活动的一部分。 这些数据来自 ASO L4 Lidar Snow Depth 50m UTM Grid 数据产品和模型雪密度。
参数:SNOW WATER EQUIVALENT 平台:DHC-6,King Air 传感器:Riegl LMS-Q1560 数据格式:GeoTIFF,PNG 时间覆盖范围:2013 年 4 月 3 日至 2019 年 7 月 16 日 时间分辨率:
空间分辨率: 50 m 50 m 空间参考系: WGS 84 / UTM zone 10NEPSG:32610 WGS 84 / UTM zone 11NEPSG:32611 WGS 84 / UTM zone 12NEPSG:32612 WGS 84 / UTM zone 13NEPSG:32613
摘要
该数据集是50 m分辨率的雪水当量(SWE)地图的集合,测量方法为 机载雪天文台(AsO),一个耦合成像光谱仪和扫描激光雷达系统 由NASA/JPL创建。成像光谱仪用于量化光谱脉冲、宽带 雷诺数,以及雪中灰尘和黑碳的辐射强迫。扫描激光雷达测量雪 使用差测高法减去无雪网格海拔数据的深度 积雪覆盖的网格化海拔数据(Deems等人,2013年)。原来3 m的雪深 ASO L4激光雷达雪深3 m UTM网格数据集中提供的测量结果如下 用于汇总ASO L4 Lidar SnowDepth 50 m UTM中的50 m网格化雪深度数据 网格数据集。为了推断此处提供的SWE数据,合并了50 m雪深数据 雪密度由iSnobal建模,这是一种基于网格分布的、基于物理的能量平衡 模型
代码
!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassifyimport pandas as pd
import leafmapurl = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
dfleafmap.nasa_data_login()results, gdf = leafmap.nasa_data_search(short_name="SO_50M_SWE",cloud_hosted=True,bounding_box=(-118.4259857, 37.37399023, -118.4109694, 37.39260287),temporal=("2013-04-03", "2019-07-16"),count=-1, # use -1 to return all datasetsreturn_gdf=True,
)gdf.explore()#leafmap.nasa_data_download(results[:5], out_dir="data")
引用
Painter, T. (2018). ASO L4 Lidar Snow Water Equivalent 50m UTM Grid, Version 1 [Data Set]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/M4TUH28NHL4Z. Date Accessed 08-25-2024.
网址推荐
0代码在线构建地图应用
https://www.mapmost.com/#/?source_inviter=CnVrwIQs
机器学习
https://www.cbedai.net/xg
这篇关于NASA数据集:50 m分辨率的雪水当量(SWE)地图的集合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!