Emgu-WPF学习使用-识别二维码的位置

2024-09-01 06:38

本文主要是介绍Emgu-WPF学习使用-识别二维码的位置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

   参考链接:http://blog.csdn.net/gaobobo138968/article/details/47663607


   我完全参照该链接实现了二维码的位置锁定,向原作者致敬。


   由于我使用的为最新版本的Emgu,很多封装函数调用方法有所变化,新手接触Emgu,尝试做了调整,部分参数也做了微调!

   我使用的Emgu版本:emgucv-windesktop 3.2.0.2682

   最终我实现的效果图如下:


前台xaml: 

 <Grid>
        <Grid.ColumnDefinitions>
            <ColumnDefinition/>
            <ColumnDefinition/>
            <ColumnDefinition/>
            <ColumnDefinition/>
        </Grid.ColumnDefinitions>
        <Grid.RowDefinitions>
            <RowDefinition/>
            <RowDefinition/>
        </Grid.RowDefinitions>
        <Image x:Name="Img1" Grid.Column="0" />
        <Image x:Name="Img2" Grid.Column="1" />
        <Image x:Name="Img3" Grid.Column="2" />
        <Image x:Name="Img4" Grid.Column="3" />
        <Image x:Name="Img5" Grid.Column="0" Grid.Row="1"/>
        <Image x:Name="Img6" Grid.Column="1" Grid.Row="1"/>
        <Image x:Name="Img7" Grid.Column="2" Grid.Row="1"/>
        <Viewbox Stretch="Fill" Grid.Column="3" Grid.Row="1">
            <Grid Width="1134" Height="850" Background="Silver">
                <Image x:Name="Img8"/>
                <Canvas x:Name="CvMainZm"/>
            </Grid>
        </Viewbox>
       
    </Grid>

后台源码:


        private void ShowImage(System.Windows.Controls.Image oImage, UMat src)
        {
            this.Dispatcher.Invoke(() => {
                oImage.Source = BitmapSourceConvert.ToBitmapSource(src);
            });
        }


        private void ShowBgrImage(System.Windows.Controls.Image oImage, Image<Bgr, byte> src)
        {
            this.Dispatcher.Invoke(() => {
                oImage.Source = BitmapSourceConvert.ToBitmapSource(src);
            });
        }


        private void ShowGrayImage(System.Windows.Controls.Image oImage, Image<Gray, byte> src)
        {
            this.Dispatcher.Invoke(() => {
                oImage.Source = BitmapSourceConvert.ToBitmapSource(src);
            });
        }




        public MainWindow()
        {
            InitializeComponent();


            this.Loaded += MainWindow_Loaded;
        }


        //参考链接 http://blog.csdn.net/gaobobo138968/article/details/47663607
        private void MainWindow_Loaded(object sender, RoutedEventArgs e)
        {
            string sFile = AppDomain.CurrentDomain.BaseDirectory + "Test.jpg";


            System.Drawing.Image img = System.Drawing.Image.FromFile(sFile);
            Bitmap barcodeBitmap = new Bitmap(img);
            Image<Bgr, byte> img_src = new Image<Bgr, byte>(barcodeBitmap);


            this.ShowBgrImage(this.Img1, img_src);


            //灰度化
            Image<Gray, byte> imput_gray = new Image<Gray, byte>(img_src.Size);
            CvInvoke.CvtColor(img_src, imput_gray, ColorConversion.Bgr2Gray);
            this.ShowGrayImage(this.Img2, imput_gray);


            //计算x,y方向梯度,相加
            Image<Gray, byte> grad_x1 = new Image<Gray, byte>(img_src.Size);
            Image<Gray, byte> grad_y1 = new Image<Gray, byte>(img_src.Size);
            Image<Gray, byte> grad_all = new Image<Gray, byte>(img_src.Size);
            CvInvoke.Sobel(imput_gray, grad_x1, DepthType.Default, 0, 1, 3);
            CvInvoke.Sobel(imput_gray, grad_y1, DepthType.Default, 1, 0, 3);
            CvInvoke.Add(grad_x1, grad_y1, grad_all, null);
            this.ShowGrayImage(this.Img3, grad_all);


            // 高斯模糊
            grad_all = grad_all.SmoothGaussian(9);
            this.ShowGrayImage(this.Img4, grad_all);


            // 二值化
            CvInvoke.Threshold(grad_all, grad_all, 100, 255, ThresholdType.Binary);
            this.ShowGrayImage(this.Img5, grad_all);


            //消除裂缝
            Mat oMat1 = CvInvoke.GetStructuringElement(Emgu.CV.CvEnum.ElementShape.Rectangle, 
                new System.Drawing.Size(15, 15), new System.Drawing.Point(0, 0));
            CvInvoke.MorphologyEx(grad_all, grad_all, Emgu.CV.CvEnum.MorphOp.Close, oMat1, 
                new System.Drawing.Point(0, 0), 1, BorderType.Default,
                new MCvScalar(255, 0, 0, 255));
            this.ShowGrayImage(this.Img6, grad_all);


            //膨胀与腐蚀(消除杂点)
            Mat oMat2 = CvInvoke.GetStructuringElement(Emgu.CV.CvEnum.ElementShape.Rectangle,
               new System.Drawing.Size(5, 5), new System.Drawing.Point(0, 0));
            CvInvoke.Erode(grad_all, grad_all, oMat2, new System.Drawing.Point(0, 0), 4, 
                BorderType.Default, new MCvScalar(255, 0, 0, 255));
            CvInvoke.Dilate(grad_all, grad_all, oMat2, new System.Drawing.Point(0, 0), 4,
                BorderType.Default, new MCvScalar(255, 0, 0, 255));
            this.ShowGrayImage(this.Img7, grad_all);


            //查找轮廓,绘制轮廓
            #region Find triangles and rectangles
            List<Triangle2DF> triangleList = new List<Triangle2DF>();
            List<RotatedRect> boxList = new List<RotatedRect>(); //a box is a rotated rectangle


            using (VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint())
            {
                CvInvoke.FindContours(grad_all, contours, null, RetrType.List, ChainApproxMethod.ChainApproxSimple);
                int count = contours.Size;
                for (int i = 0; i < count; i++)
                {
                    using (VectorOfPoint contour = contours[i])
                    using (VectorOfPoint approxContour = new VectorOfPoint())
                    {
                        CvInvoke.ApproxPolyDP(contour, approxContour, CvInvoke.ArcLength(contour, true) * 0.05, true);
                        if (CvInvoke.ContourArea(approxContour, false) > 500)
                        {
                            if (approxContour.Size == 3)
                            {
                                System.Drawing.Point[] pts = approxContour.ToArray();
                                triangleList.Add(new Triangle2DF(
                                   pts[0],
                                   pts[1],
                                   pts[2]
                                   ));
                            }
                            else if (approxContour.Size == 4)
                            {
                                #region determine if all the angles in the contour are within [80, 100] degree
                                bool isRectangle = true;
                                System.Drawing.Point[] pts = approxContour.ToArray();
                                LineSegment2D[] edges = Emgu.CV.PointCollection.PolyLine(pts, true);


                                for (int j = 0; j < edges.Length; j++)
                                {
                                    double angle = Math.Abs(
                                       edges[(j + 1) % edges.Length].GetExteriorAngleDegree(edges[j]));
                                    if (angle < 80 || angle > 100)
                                    {
                                        isRectangle = false;
                                        break;
                                    }
                                }
                                #endregion
                                
                                if (isRectangle)
                                {
                                    boxList.Add(CvInvoke.MinAreaRect(approxContour));
                                }
                            }
                        }
                    }
                }


            }


            //this.Img8.Source = new BitmapImage(new Uri(sFile));
            this.ShowGrayImage(this.Img8, grad_all);
            foreach (RotatedRect box in boxList)
            {
                System.Drawing.Point[] pts = Array.ConvertAll(box.GetVertices(), System.Drawing.Point.Round);


                for (int i = 0; i < pts.Length; i++)
                {
                    System.Drawing.Point point = pts[i];
                    System.Drawing.Point point1 = new System.Drawing.Point();
                    if (i == pts.Length-1)
                        point1 = pts[0];
                    else
                        point1 = pts[i + 1];


                    Line oLine = new Line();
                    oLine.Stroke = new SolidColorBrush(Colors.Red);
                    oLine.StrokeThickness = 5;
                    oLine.X1 = point.X;
                    oLine.Y1 = point.Y;


                    oLine.X2 = point1.X;
                    oLine.Y2 = point1.Y;
                    this.CvMainZm.Children.Add(oLine);
                }
            }
            #endregion
        }


     BitmapSourceConvert 类直接使用的SDK中的示例。

这篇关于Emgu-WPF学习使用-识别二维码的位置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126221

相关文章

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

Spring Boot 集成 Quartz并使用Cron 表达式实现定时任务

《SpringBoot集成Quartz并使用Cron表达式实现定时任务》本篇文章介绍了如何在SpringBoot中集成Quartz进行定时任务调度,并通过Cron表达式控制任务... 目录前言1. 添加 Quartz 依赖2. 创建 Quartz 任务3. 配置 Quartz 任务调度4. 启动 Sprin