Emgu-WPF学习使用-识别二维码的位置

2024-09-01 06:38

本文主要是介绍Emgu-WPF学习使用-识别二维码的位置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

   参考链接:http://blog.csdn.net/gaobobo138968/article/details/47663607


   我完全参照该链接实现了二维码的位置锁定,向原作者致敬。


   由于我使用的为最新版本的Emgu,很多封装函数调用方法有所变化,新手接触Emgu,尝试做了调整,部分参数也做了微调!

   我使用的Emgu版本:emgucv-windesktop 3.2.0.2682

   最终我实现的效果图如下:


前台xaml: 

 <Grid>
        <Grid.ColumnDefinitions>
            <ColumnDefinition/>
            <ColumnDefinition/>
            <ColumnDefinition/>
            <ColumnDefinition/>
        </Grid.ColumnDefinitions>
        <Grid.RowDefinitions>
            <RowDefinition/>
            <RowDefinition/>
        </Grid.RowDefinitions>
        <Image x:Name="Img1" Grid.Column="0" />
        <Image x:Name="Img2" Grid.Column="1" />
        <Image x:Name="Img3" Grid.Column="2" />
        <Image x:Name="Img4" Grid.Column="3" />
        <Image x:Name="Img5" Grid.Column="0" Grid.Row="1"/>
        <Image x:Name="Img6" Grid.Column="1" Grid.Row="1"/>
        <Image x:Name="Img7" Grid.Column="2" Grid.Row="1"/>
        <Viewbox Stretch="Fill" Grid.Column="3" Grid.Row="1">
            <Grid Width="1134" Height="850" Background="Silver">
                <Image x:Name="Img8"/>
                <Canvas x:Name="CvMainZm"/>
            </Grid>
        </Viewbox>
       
    </Grid>

后台源码:


        private void ShowImage(System.Windows.Controls.Image oImage, UMat src)
        {
            this.Dispatcher.Invoke(() => {
                oImage.Source = BitmapSourceConvert.ToBitmapSource(src);
            });
        }


        private void ShowBgrImage(System.Windows.Controls.Image oImage, Image<Bgr, byte> src)
        {
            this.Dispatcher.Invoke(() => {
                oImage.Source = BitmapSourceConvert.ToBitmapSource(src);
            });
        }


        private void ShowGrayImage(System.Windows.Controls.Image oImage, Image<Gray, byte> src)
        {
            this.Dispatcher.Invoke(() => {
                oImage.Source = BitmapSourceConvert.ToBitmapSource(src);
            });
        }




        public MainWindow()
        {
            InitializeComponent();


            this.Loaded += MainWindow_Loaded;
        }


        //参考链接 http://blog.csdn.net/gaobobo138968/article/details/47663607
        private void MainWindow_Loaded(object sender, RoutedEventArgs e)
        {
            string sFile = AppDomain.CurrentDomain.BaseDirectory + "Test.jpg";


            System.Drawing.Image img = System.Drawing.Image.FromFile(sFile);
            Bitmap barcodeBitmap = new Bitmap(img);
            Image<Bgr, byte> img_src = new Image<Bgr, byte>(barcodeBitmap);


            this.ShowBgrImage(this.Img1, img_src);


            //灰度化
            Image<Gray, byte> imput_gray = new Image<Gray, byte>(img_src.Size);
            CvInvoke.CvtColor(img_src, imput_gray, ColorConversion.Bgr2Gray);
            this.ShowGrayImage(this.Img2, imput_gray);


            //计算x,y方向梯度,相加
            Image<Gray, byte> grad_x1 = new Image<Gray, byte>(img_src.Size);
            Image<Gray, byte> grad_y1 = new Image<Gray, byte>(img_src.Size);
            Image<Gray, byte> grad_all = new Image<Gray, byte>(img_src.Size);
            CvInvoke.Sobel(imput_gray, grad_x1, DepthType.Default, 0, 1, 3);
            CvInvoke.Sobel(imput_gray, grad_y1, DepthType.Default, 1, 0, 3);
            CvInvoke.Add(grad_x1, grad_y1, grad_all, null);
            this.ShowGrayImage(this.Img3, grad_all);


            // 高斯模糊
            grad_all = grad_all.SmoothGaussian(9);
            this.ShowGrayImage(this.Img4, grad_all);


            // 二值化
            CvInvoke.Threshold(grad_all, grad_all, 100, 255, ThresholdType.Binary);
            this.ShowGrayImage(this.Img5, grad_all);


            //消除裂缝
            Mat oMat1 = CvInvoke.GetStructuringElement(Emgu.CV.CvEnum.ElementShape.Rectangle, 
                new System.Drawing.Size(15, 15), new System.Drawing.Point(0, 0));
            CvInvoke.MorphologyEx(grad_all, grad_all, Emgu.CV.CvEnum.MorphOp.Close, oMat1, 
                new System.Drawing.Point(0, 0), 1, BorderType.Default,
                new MCvScalar(255, 0, 0, 255));
            this.ShowGrayImage(this.Img6, grad_all);


            //膨胀与腐蚀(消除杂点)
            Mat oMat2 = CvInvoke.GetStructuringElement(Emgu.CV.CvEnum.ElementShape.Rectangle,
               new System.Drawing.Size(5, 5), new System.Drawing.Point(0, 0));
            CvInvoke.Erode(grad_all, grad_all, oMat2, new System.Drawing.Point(0, 0), 4, 
                BorderType.Default, new MCvScalar(255, 0, 0, 255));
            CvInvoke.Dilate(grad_all, grad_all, oMat2, new System.Drawing.Point(0, 0), 4,
                BorderType.Default, new MCvScalar(255, 0, 0, 255));
            this.ShowGrayImage(this.Img7, grad_all);


            //查找轮廓,绘制轮廓
            #region Find triangles and rectangles
            List<Triangle2DF> triangleList = new List<Triangle2DF>();
            List<RotatedRect> boxList = new List<RotatedRect>(); //a box is a rotated rectangle


            using (VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint())
            {
                CvInvoke.FindContours(grad_all, contours, null, RetrType.List, ChainApproxMethod.ChainApproxSimple);
                int count = contours.Size;
                for (int i = 0; i < count; i++)
                {
                    using (VectorOfPoint contour = contours[i])
                    using (VectorOfPoint approxContour = new VectorOfPoint())
                    {
                        CvInvoke.ApproxPolyDP(contour, approxContour, CvInvoke.ArcLength(contour, true) * 0.05, true);
                        if (CvInvoke.ContourArea(approxContour, false) > 500)
                        {
                            if (approxContour.Size == 3)
                            {
                                System.Drawing.Point[] pts = approxContour.ToArray();
                                triangleList.Add(new Triangle2DF(
                                   pts[0],
                                   pts[1],
                                   pts[2]
                                   ));
                            }
                            else if (approxContour.Size == 4)
                            {
                                #region determine if all the angles in the contour are within [80, 100] degree
                                bool isRectangle = true;
                                System.Drawing.Point[] pts = approxContour.ToArray();
                                LineSegment2D[] edges = Emgu.CV.PointCollection.PolyLine(pts, true);


                                for (int j = 0; j < edges.Length; j++)
                                {
                                    double angle = Math.Abs(
                                       edges[(j + 1) % edges.Length].GetExteriorAngleDegree(edges[j]));
                                    if (angle < 80 || angle > 100)
                                    {
                                        isRectangle = false;
                                        break;
                                    }
                                }
                                #endregion
                                
                                if (isRectangle)
                                {
                                    boxList.Add(CvInvoke.MinAreaRect(approxContour));
                                }
                            }
                        }
                    }
                }


            }


            //this.Img8.Source = new BitmapImage(new Uri(sFile));
            this.ShowGrayImage(this.Img8, grad_all);
            foreach (RotatedRect box in boxList)
            {
                System.Drawing.Point[] pts = Array.ConvertAll(box.GetVertices(), System.Drawing.Point.Round);


                for (int i = 0; i < pts.Length; i++)
                {
                    System.Drawing.Point point = pts[i];
                    System.Drawing.Point point1 = new System.Drawing.Point();
                    if (i == pts.Length-1)
                        point1 = pts[0];
                    else
                        point1 = pts[i + 1];


                    Line oLine = new Line();
                    oLine.Stroke = new SolidColorBrush(Colors.Red);
                    oLine.StrokeThickness = 5;
                    oLine.X1 = point.X;
                    oLine.Y1 = point.Y;


                    oLine.X2 = point1.X;
                    oLine.Y2 = point1.Y;
                    this.CvMainZm.Children.Add(oLine);
                }
            }
            #endregion
        }


     BitmapSourceConvert 类直接使用的SDK中的示例。

这篇关于Emgu-WPF学习使用-识别二维码的位置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126221

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推