Android安卓麻将识别源码Demo( 三)

2024-09-01 06:08

本文主要是介绍Android安卓麻将识别源码Demo( 三),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Android安卓麻将识别源码Demo( 三)

未经过允许不得转载,转载请联系我,如何联系,点我头像。

连载已经完结,

百度网盘测试APP下载地址: 
链接:https://pan.baidu.com/s/1grwUcLkI9i3OABsLtB5h3Q 
提取码:pkbl 
先见效果图,另外我已经上传到了抖音视频,想看NB效果,可以点击链接直接观看:

http://v.douyin.com/roLnjL/ 


       本人从事机器学习有一些时间,感觉与一般做APP应用也没有啥差别,现在每天就是准备样本 ,调整参数,训练,验证结果。可能是我还没有达到哪些教授的水平能设计神经网络吧,感觉也就是一般马龙该做的杂七杂八事情。另外我更加关注移动设备AI的实现与效果,体验一样重要,识别的速度要快!

       接下来的博客开始记录我研究过程,过程是:采集样本->标注->训练->测试。
     

       上一期讲了如何进行标注,本期将开始训练。

       本次使用的是谷歌云平台训练,实际上就是一个ubuntu 系统,不过现在有免费的300美金使用。部署好服务器后。将训练的文件上传到云服务器。需要的文件有这些。

      然后执行训练

python object_detection/model_main.py --model_dir=/home/softboyes/digeai/majiang/training --pipeline_config_path=/home/softboyes/digeai/majiang/ssd_mobilenet_v1_pets.config

    由于我使用的8cpu+20G内存 训练36小时训练了34k 步法。

 

    通过tensorboard观察,loss效果不太理想打算训练到60k。

    下载后导出模型:

     

python object_detection/export_inference_graph.py --input_type image_tensor --pipeline_config_path E:/AI_LAB/majiang/gitdata/ssd_mobilenet_v1_pets.config --trained_checkpoint_prefix E:/AI_LAB/majiang/gitdata/out/model.ckpt-24720 --output_directory E:/AI_LAB/majiang/gitdata/export2

  导出后模型如下:并写下测试test.py

 

import os
import sys
import tarfileimport cv2
import numpy as np
import tensorflow as tfsys.path.append("..")
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util# Path to frozen detection graph
CWD_PATH = os.getcwd()PATH_TO_CKPT = os.path.join(CWD_PATH,'frozen_inference_graph.pb')# List of the strings that is used to add correct label for each box.PATH_TO_LABELS = os.path.join(CWD_PATH,'labelmap.pbtxt')NUM_CLASSES = 28detection_graph = tf.Graph()with detection_graph.as_default():od_graph_def = tf.GraphDef()with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:serialized_graph = fid.read()od_graph_def.ParseFromString(serialized_graph)tf.import_graph_def(od_graph_def, name='')label_map = label_map_util.load_labelmap(PATH_TO_LABELS)categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)category_index = label_map_util.create_category_index(categories)def load_image_into_numpy_array(image):(im_width, im_height) = image.sizereturn np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)with detection_graph.as_default():with tf.Session(graph=detection_graph) as sess:image_np = cv2.imread("test.jpg")cv2.imshow("input", image_np)print(image_np.shape)# image_np == [1, None, None, 3]image_np_expanded = np.expand_dims(image_np, axis=0)image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')boxes = detection_graph.get_tensor_by_name('detection_boxes:0')scores = detection_graph.get_tensor_by_name('detection_scores:0')classes = detection_graph.get_tensor_by_name('detection_classes:0')num_detections = detection_graph.get_tensor_by_name('num_detections:0')# Actual detection.(boxes, scores, classes, num_detections) = sess.run([boxes, scores, classes, num_detections],feed_dict={image_tensor: image_np_expanded})# Visualization of the results of a detection.vis_util.visualize_boxes_and_labels_on_image_array(image_np,np.squeeze(boxes),np.squeeze(classes).astype(np.int32),np.squeeze(scores),category_index,use_normalized_coordinates=True,min_score_thresh=0.4,line_thickness=3)cv2.imshow('object detection', image_np)cv2.imwrite("run_result.png", image_np)cv2.waitKey(0)cv2.destroyAllWindows()sess.close()

测试模型,发现效果还算理想。接下来往安卓设备上面迁移。

迁移需要的问题:  frozen_inference_graph.pb  labelmap.pbtxt

拷贝到TensorFlow demo里面assert 文件夹。修改 DetectorActivity 

修改后:

  private static final String TF_OD_API_MODEL_FILE ="file:///android_asset/frozen_inference_graph.pb";private static final String TF_OD_API_LABELS_FILE = "file:///android_asset/majiang.txt";

 然后用Android studio编译生成APK,然后安装到安卓手机。

下一章讲安卓手机效果与训练心得以及样本要求。

 

这篇关于Android安卓麻将识别源码Demo( 三)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126160

相关文章

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Android自定义Scrollbar的两种实现方式

《Android自定义Scrollbar的两种实现方式》本文介绍两种实现自定义滚动条的方法,分别通过ItemDecoration方案和独立View方案实现滚动条定制化,文章通过代码示例讲解的非常详细,... 目录方案一:ItemDecoration实现(推荐用于RecyclerView)实现原理完整代码实现

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Android App安装列表获取方法(实践方案)

《AndroidApp安装列表获取方法(实践方案)》文章介绍了Android11及以上版本获取应用列表的方案调整,包括权限配置、白名单配置和action配置三种方式,并提供了相应的Java和Kotl... 目录前言实现方案         方案概述一、 androidManifest 三种配置方式

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

Spring 中 BeanFactoryPostProcessor 的作用和示例源码分析

《Spring中BeanFactoryPostProcessor的作用和示例源码分析》Spring的BeanFactoryPostProcessor是容器初始化的扩展接口,允许在Bean实例化前... 目录一、概览1. 核心定位2. 核心功能详解3. 关键特性二、Spring 内置的 BeanFactory

讯飞webapi语音识别接口调用示例代码(python)

《讯飞webapi语音识别接口调用示例代码(python)》:本文主要介绍如何使用Python3调用讯飞WebAPI语音识别接口,重点解决了在处理语音识别结果时判断是否为最后一帧的问题,通过运行代... 目录前言一、环境二、引入库三、代码实例四、运行结果五、总结前言基于python3 讯飞webAPI语音

Android WebView无法加载H5页面的常见问题和解决方法

《AndroidWebView无法加载H5页面的常见问题和解决方法》AndroidWebView是一种视图组件,使得Android应用能够显示网页内容,它基于Chromium,具备现代浏览器的许多功... 目录1. WebView 简介2. 常见问题3. 网络权限设置4. 启用 JavaScript5. D