WAVE-CLUSTER算法原理及Python实践

2024-09-01 04:20

本文主要是介绍WAVE-CLUSTER算法原理及Python实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、WAVE-CLUSTER算法原理

WAVE-CLUSTER算法,也称为WaveCluster小波聚类算法,是一种基于小波变换的聚类分析方法。其原理主要涉及到将数据看作多维信号进行处理,并通过小波变换将数据从原始空间变换到频域空间,以揭示数据的自然聚类属性。以下是WAVE-CLUSTER算法的主要原理步骤:

1、数据空间量化:

首先,将多维数据空间进行量化,即将每个数据点映射到一个量化的特征空间中。这个过程中,通常会将每一维特征等分为多个小区间,形成量化的网格结构。

2、小波变换:

对量化后的特征空间应用小波变换。小波变换是一种多分辨率分析工具,能够将信号分解为不同频率的成分。在WAVE-CLUSTER中,通过小波变换将数据从原始的空间域转换到频域,以揭示数据的内在结构和聚类特征。

小波变换后的数据在不同分辨率下表现出不同的特性。高分辨率可以提供数据的细节信息,而低分辨率则能够捕获数据的整体轮廓。

3、密度估计与聚类:

在小波变换后的频域空间中,通过计算数据的密度来识别聚类。密度较高的区域通常对应于数据中的聚类。

可以使用核函数与变换后的数据进行卷积来估计密度。核函数的选择和参数的设置对聚类结果有很大影响。

根据密度阈值或其他聚类准则,将数据点分为不同的簇。这些簇代表了数据中的自然聚类结构。

4、结果映射与输出:

由于聚类是在小波变换后的频域空间中进行的,因此需要将聚类结果映射回原始数据空间。这通常通过查找表或映射关系来实现。

输出聚类结果,包括每个数据点所属的聚类标签和聚类中心等信息。

WAVE-CLUSTER算法的优点在于它能够利用小波变换的多分辨率特性来捕获数据的不同层次的聚类结构。这使得算法在处理具有复杂结构和噪声的数据时表现出色。此外,该算法还具有一定的灵活性,可以通过调整小波变换的参数和聚类准则来适应不同的应用场景和数据特性。

需要注意的是,WAVE-CLUSTER算法的性能和效果受到多种因素的影响,包括数据的分布特性、量化网格的密度、小波变换的参数设置以及聚类准则的选择等。因此,在实际应用中需要根据具体情况进行参数调整和优化以获得最佳的聚类效果。

二、WAVE-CLUSTER算法Python实践

WAVE-CLUSTER 算法并不是一个广泛流行的标准库算法,在 Python 中没有直接的库函数可以直接调用。不过,我们可以根据 WAVE-CLUSTER 的原理自己实现一个基本的版本。

由于 WAVE-CLUSTER 涉及到小波变换和密度估计,我们可以使用 Python 中的一些科学计算库,如 NumPy 和 SciPy,以及可能用到的小波变换库如 PyWavelets。以下是一个简化的 WAVE-CLUSTER 算法实现框架:

import numpy as np

import pywt

from scipy.ndimage import convolve

def quantize_data(data, bins_per_dim):

    """

    将数据量化到指定的网格中。

    """

    quantized = np.floor(data / (np.max(data, axis=0) / bins_per_dim)).astype(int)

    return quantized

def wavelet_transform(quantized, wavelet, level):

    """

    对量化后的数据进行小波变换。

    """

    coeffs = pywt.wavedec2(quantized, wavelet, level=level)

    return coeffs

def density_estimation(coeffs, kernel):

    """

    估计小波变换后的系数的密度。

    这里简单使用高斯核进行卷积作为示例。

    """

    density = coeffs[0]  # 以最低频系数为例进行密度估计

    density = convolve(density, kernel, mode='constant', cval=0)

    return density

def cluster_identification(density, threshold):

    """

    根据密度阈值识别聚类。

    这里简单使用密度阈值进行聚类划分。

    """

    clusters = np.where(density > threshold, 1, 0)

    return clusters

def wave_cluster(data, bins_per_dim, wavelet='haar', level=1, kernel_size=3, threshold=None):

    """

    WAVE-CLUSTER 算法的主函数。

    """

    quantized = quantize_data(data, bins_per_dim)

    coeffs = wavelet_transform(quantized, wavelet, level)

   

    # 这里假设我们只用最低频的系数进行密度估计

    density = density_estimation(coeffs[0], np.ones((kernel_size, kernel_size)) / (kernel_size ** 2))

   

    # 如果没有给定阈值,可以使用密度的一些统计量来估计

    if threshold is None:

        threshold = np.mean(density) + np.std(density)

   

    clusters = cluster_identification(density, threshold)

   

    # 注意:这里的 clusters 是基于量化网格的,需要映射回原始数据(如果需要)

    # 这里没有实现映射回原始数据的步骤

   

    return clusters

# 示例用法

# 假设我们有一些二维数据

data = np.random.rand(100, 2)

bins_per_dim = 10  # 每维量化成10个区间

clusters = wave_cluster(data, bins_per_dim)

# 注意:这里返回的 clusters 是一个二维数组,表示量化网格上的聚类结果

# 并没有直接映射回原始数据点注意:

上面的代码是一个非常简化的示例,它并没有完全按照 WAVE-CLUSTER 算法的所有细节来实现。特别是,它只使用了小波变换的最低频系数来进行密度估计,并且没有处理多维小波变换的细节。

在实际应用中,可能需要更复杂的密度估计方法和聚类识别策略。

由于 WAVE-CLUSTER 通常在频域中进行聚类,然后将结果映射回原始空间,因此上面的代码没有实现这一步骤。如果需要,你可能需要开发一个从量化网格到原始数据的映射函数。

阈值的选择对聚类结果有很大影响。在上面的示例中,我们简单地使用了均值加上标准差作为阈值,但在实际应用中可能需要更精细的阈值选择策略。

这篇关于WAVE-CLUSTER算法原理及Python实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1125924

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal