完全背包问题-leetcode-08.11. 硬币

2024-09-01 03:38

本文主要是介绍完全背包问题-leetcode-08.11. 硬币,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述https://leetcode-cn.com/problems/coin-lcci/

面试题 08.11. 硬币

硬币。给定数量不限的硬币,币值为25分、10分、5分和1分,编写代码计算n分有几种表示法。(结果可能会很大,你需要将结果模上1000000007)

等价

背包。给定数量物品,物品体积为25、10、5和1,编写代码背包体积为n,装物品的方法有多少种。(结果可能会很大,你需要将结果模上1000000007)

关键点

1.定义dp数组,dp[i][j]表示前i个物品(本例是硬币),在背包大小(本例是分数)为j的情况下有多少种组合,dp[m][n]就是要求的结果。

2.初始化
   前m个硬币,组成0分的种类都是1;前0个硬币,组成非0分的种类都是0. 即dp[0][0] =dp[1][0]...=dp[m][0] =1;dp[0][1]=dp[0][2]...=dp[0][n] =0 

3.求解过程。
   前一个硬币,组成分数大小为1到n, 种类分别为dp[1][0], dp[1][1], ... , dp[1][n]
   前两个硬币,组成分数大小为1到n, 种类分别为dp[2][0], dp[2][1], ... , dp[2][n]
   ...
   前i个硬币,组成分数大小为1到n, 最大价值分别为dp[i][0], dp[i][1], ... , dp[i][n]

4.递推公式.  求dp[i][j]共有两种情况, 装入第i个硬币或者不装入第i个硬币。
     装入第i个硬币,剩下的分数为j-coins[i-1], 即从前i个硬币里面组合j-coins[i-1]分,对应的种类等价dp[i][j - coin[i - 1]];
     不装入第i个硬币,剩下的分数不变,即从前i-1个硬币里面组合j分,对应的种类dp[i - 1][j];
   即递推公式为dp[i][j] = dp[i-1][j] + dp[i][j - coins[j-coins[i - 1]]]

class Solution(object):def waysToChange(self, n):""":type n: int:rtype: int"""coins = [1, 5, 10, 25]dp = [[0] * (n + 1) for i in range(len(coins) + 1)]dp[0][0] = 1for i in range(1, len(coins) + 1):dp[i][0] = 1for j in range(1, n + 1):dp[i][j] = dp[i - 1][j]if j >= coins[i - 1]:dp[i][j] += dp[i][j - coins[i - 1]]return dp[-1][-1]def test():s = Solution()print s.waysToChange(5) == 2	print s.waysToChange(10) == 4if __name__ == '__main__':test()

dp空间优化分析1

分析递推公式,dp[i][j] = dp[i-1][j] + dp[i][j-coins[i - 1]], 可以看出,在求解dp[i][j]时,不需要保存前i-1行,只需要保存第i行(因为要用到dp[i][j-coins[i - 1]]),和第i-1行的第j个元素(因为要用到dp[i-1][j])。 如果只用一行表示,代码如下。

class Solution(object):def waysToChange(self, n):""":type n: int:rtype: int"""coins = [1, 5, 10, 25]dp = [0] * (n + 1)dp[0] = 1for i in range(1, len(coins) + 1):for j in range(1, n + 1):if j >= coins[i - 1]:dp[j] += dp[j - coins[i - 1]]return dp[-1] % 1000000007def test():s = Solution()print s.waysToChange(5) == 2	print s.waysToChange(10) == 4if __name__ == '__main__':test()

和之前代码相比,少了dp[i][j] = dp[i - 1][j]。因为在遍历到第i行第j列时,还没更新dp[j]时,dp[j]其实是在遍历第i-1行第j列时算出的,相当于前面的dp[i-1][j]。正因为没有覆盖dp[i-1][j]信息,所以dp才可以用一维数组替换二维数组

这篇关于完全背包问题-leetcode-08.11. 硬币的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1125835

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给

Java程序运行时出现乱码问题的排查与解决方法

《Java程序运行时出现乱码问题的排查与解决方法》本文主要介绍了Java程序运行时出现乱码问题的排查与解决方法,包括检查Java源文件编码、检查编译时的编码设置、检查运行时的编码设置、检查命令提示符的... 目录一、检查 Java 源文件编码二、检查编译时的编码设置三、检查运行时的编码设置四、检查命令提示符