第L1周:机器学习-数据预处理

2024-08-31 23:52

本文主要是介绍第L1周:机器学习-数据预处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第L1周:机器学习-数据预处理

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

学习要点: ****

  1. 学习如何处理缺损数据
  2. 尝试进行Label编码
  3. 使用train_test_split进行数据划分
  4. 学习特征标准化

在开始本周的学习任务前,需要先安装好numpy、Pandas、sklearn三个包,安装方法如下:
pip install numpy
pip install Pandas
pip install scikit-learn

🥮 代码学习
🏡 我的环境:
语言环境:Python3.10
编译器:PyCharm

第1步:导入库

import numpy  as np
import pandas as pd

第2步:导入数据集
●数据集:
![[Data.csv]]

dataset = pd.read_csv('../data/Data.csv')
print(dataset)

image.png

X = dataset.iloc[ : , :-1].values
Y = dataset.iloc[ : , 3].values
print(X)

image.png

print(Y)

image.png

第3步:处理丢失数据
SimpleImputer函数用于处理缺损值,详细介绍见文末。

# 处理丢失数据 SimpleImputer可以处理
from sklearn.impute import SimpleImputer
imputer =  SimpleImputer(strategy='mean')  # 用均值来填补丢失值
imputer = imputer.fit(X[:, 1:3])
X[:, 1:3] = imputer.transform(X[:, 1:3])
print("使用SimpleImputer处理丢失数据后的X:")
print(X)

结果如下:

array([['France', 44.0, 72000.0],['Spain', 27.0, 48000.0],['Germany', 30.0, 54000.0],['Spain', 38.0, 61000.0],['Germany', 40.0, 63777.77777777778],['France', 35.0, 58000.0],['Spain', 38.77777777777778, 52000.0],['France', 48.0, 79000.0],['Germany', 50.0, 83000.0],['France', 37.0, 67000.0]], dtype=object)

image.png
注:原来的NaN处被38.7777778和63.7777778,这个值是通过mean也就是平均值而来,手动计算一下:(44+27+30+38+40+35+48+50+37) / 9 = 38.77777777777778
image.png

第4步:进行Label编码
为什么要进行Label编码?进行Label编码的主要原因是为了将文本转换为模型可以理解的数值形式。

from sklearn.preprocessing import LabelEncoder, OneHotEncoderlabelencoder_X = LabelEncoder()
# X[:, 0]是指X的所有行中的第1列进行处理
X[ : , 0]      = labelencoder_X.fit_transform(X[ : , 0])  
print(X)

结果:

array([[0, 44.0, 72000.0],[2, 27.0, 48000.0],[1, 30.0, 54000.0],[2, 38.0, 61000.0],[1, 40.0, 63777.77777777778],[0, 35.0, 58000.0],[2, 38.77777777777778, 52000.0],[0, 48.0, 79000.0],[1, 50.0, 83000.0],[0, 37.0, 67000.0]], dtype=object)

image.png
注:根据结果可以看到,labelEncoder将原X中的"France,Germany"等等按字母顺序进行了一个编号。编码规则一定是写死的吗?

labelencoder_Y = LabelEncoder()  
Y = labelencoder_Y.fit_transform(Y)  
print("对Y进行label编码:")  
print(Y)

image.png
注:Y原来的值是:Y = dataset.iloc[ : , 3].values 即下面这一列:
image.png
很明显:No被编码成0,Yes被编码成1. 这里很奇怪,它并没有按No和Yes的字母顺序进行编码。那么它的编码规则到底是什么?labelencode的fit里进行编码规则的设定,参考:LabelEncoder 类属性类方法及用法-CSDN博客

第5步:拆分为训练集和测试集

# 拆分训练集和测试集  
from sklearn.model_selection import  train_test_split  
X_train, X_teest, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state= 0)

🌟 train_test_split()函数详解
train_test_split():将数据集划分为测试集与训练集。
●X:所要划分的整体数据的特征集;
●Y:所要划分的整体数据的结果;
●test_size:测试集数据量在整体数据量中的占比(可以理解为X_test与X的比值);
●random_state:
○若不填或者填0,每次生成的数据都是随机,可能不一样。
○若为整数,每次生成的数据都相同;

第6步:特征标准化
解释:
image.png

print("X_train:\n", X_train)

image.png

print("X_test:\n", X_test)

image.png

StandardScaler()是scikit-learn库中用于数据标准化处理的一个常用工具。标准化目的是将数据缩放到一个均值为 0,标准差为 1 的正太分布,消除不同特征量纲的影响,尤其是像支持向量机 (SVM)、逻辑回归、神经网络等基于梯度的模型

🍖 知识点讲解

1.SimpleImputer()处理缺损数据
sklearn.impute.SimpleImputer 是 Scikit-learn 库中的一个类,用于处理数据集中缺失值的插补。它通过替换缺失值为统计值(例如均值、中位数或众数)或指定的常数来处理缺失数据。以下是 SimpleImputer 的详细介绍:

🔎 参数详情:
●missing_values: 指定需要替换的缺失值。默认值为 np.nan,表示替换 NaN 值。
●strategy: 指定替换策略。可选值包括:
○’mean’: 用均值替换缺失值。仅适用于数值数据。
○’median’: 用中位数替换缺失值。仅适用于数值数据。
○’most_frequent’: 用众数(出现频率最高的值)替换缺失值。适用于数值和分类数据。
○’constant’: 用常数替换缺失值。需要同时指定 fill_value 参数。
●fill_value: 在 strategy=‘constant’ 时,指定替换缺失值的常数。默认值为 None。
●add_indicator: 是否添加二进制指示变量,用于指示缺失值的位置。默认值为 False。

🔎 SimpleImputer方法该要:
●fit(X, y=None): 拟合 imputer,计算用于替换缺失值的统计值。
●transform(X): 使用拟合的 imputer 替换缺失值。
●fit_transform(X, y=None): 结合 fit 和 transform,对数据集进行拟合并替换缺失值。

以下是一些使用 SimpleImputer 的示例:

👉 用均值替换缺失值

import numpy as np
from sklearn.impute import SimpleImputer
# 创建数据集,其中包含缺失值
X = [[1, 2], [np.nan, 3], [7, 6], [4, np.nan]]
# 创建 SimpleImputer 对象,指定用均值替换缺失值
imputer = SimpleImputer(strategy='mean')
# 训练 imputer 并转换数据
X_imputed = imputer.fit_transform(X)
print(X_imputed)

👉 用常数替换缺失值

# 创建 SimpleImputer 对象,指定用常数 -1 替换缺失值
imputer = SimpleImputer(strategy='constant', fill_value=-1)
# 训练 imputer 并转换数据
X_imputed = imputer.fit_transform(X)
print(X_imputed)

这篇关于第L1周:机器学习-数据预处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1125357

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;