线段树离散化、二分搜索、特别修改

2024-08-31 22:52

本文主要是介绍线段树离散化、二分搜索、特别修改,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

699. 掉落的方块 - 力扣(LeetCode)

1.如果直接按照原落点的值构造线段树,空间开辟会过大,所以收集所有出现过的点进行离散化

2.方块a落在1--3点,b落在3--4点,如果直接按照落点修改,查询3时位置会认为两方块重叠,但其实没有累到一起,所以方块落点的区域设置为左闭右开就可以避免这个问题

// 掉落的方块
// 有一个二维平面,x轴是最底的边界
// 给定二维整数数组pos,pos[i] = [ lefti, leni ]
// 表示第i个方块边长为leni,左侧边缘在x = lefti位置,所在高度非常高
// 所有方块都是正方形,依次从高处垂直掉落,也就是左边界顺着x = lefti往下
// 如果掉落的方块碰到已经掉落正方形的顶边或者x轴就停止掉落
// 如果方块掉落时仅仅是擦过已经掉落正方形的左侧边或右侧边,并不会停止掉落
// 一旦停止,它就会固定在那里,无法再移动,俄罗斯方块游戏和本题意思一样
// 返回一个整数数组ans ,其中ans[i]表示在第i块方块掉落后整体的最大高度
// 1 <= pos数组长度 <= 1000,1 <= lefti <= 10^8,1 <= leni <= 10^6
class Solution {
public:static const int maxn=2001;vector<int>arr;int max1[maxn<<2];int change[maxn<<2];bool update[maxn<<2];int rank(int size,int v){int l=1,r=size;int ans=0;while(r>=l){int mid=l+((r-l)>>1);if(arr[mid]>=v){ans=mid;r=mid-1;}else l=mid+1;}return ans;}void up(int i){max1[i]=max(max1[i<<1],max1[i<<1|1]);}void lazy(int i,int v){update[i]=true;change[i]=v;max1[i]=v;}void down(int i){if(update[i]){lazy(i<<1,change[i]);lazy(i<<1|1,change[i]);update[i]=false;}}void build(int l,int r,int i){if(r>l){int mid=l+((r-l)>>1);build(l,mid,i<<1);build(mid+1,r,i<<1|1);}max1[i]=0;change[i]=0;update[i]=false;}void updated(int jobl,int jobr,int jobv,int l,int r,int i){if(jobl<=l&&jobr>=r){lazy(i,jobv);}else{int mid=l+((r-l)>>1);down(i);if(jobl<=mid)updated(jobl,jobr,jobv,l,mid,i<<1);if(mid<jobr)updated(jobl,jobr,jobv,mid+1,r,i<<1|1);up(i);}}int query(int jobl,int jobr,int l,int r,int i){if(jobl<=l&&jobr>=r) return max1[i];else{int mid=l+((r-l)>>1);int ans=INT_MIN;down(i);if(mid>=jobl)ans=max(ans,query(jobl,jobr,l,mid,i<<1));if(mid<jobr)ans=max(ans,query(jobl,jobr,mid+1,r,i<<1|1));return ans;}}vector<int> fallingSquares(vector<vector<int>>& positions) {arr.assign(maxn,0);int n=1;for(auto pos:positions){arr[n++]=pos[0];arr[n++]=pos[1]+pos[0]-1;}sort(arr.begin()+1,arr.begin()+n);int size=1;for(int i=2;i<n;i++){if(arr[i]!=arr[size])arr[++size]=arr[i];}build(1,size,1);vector<int>ans;int l,r,h,rem=0;for(auto pos:positions){l=rank(size,pos[0]);r=rank(size,pos[0]+pos[1]-1);h=query(l,r,1,n,1)+pos[1];rem=max(rem,h);ans.push_back(rem);updated(l,r,h,1,n,1);}return ans;}
};

Problem - 4614 (hdu.edu.cn)

此题难点在于怎么插花:如果我们想要知道一段范围上第几个0点,可以使用二分搜索来查询

// 瓶子里的花朵
// 给定n个瓶子,编号从0~n-1,一开始所有瓶子都是空的
// 每个瓶子最多插入一朵花,实现以下两种类型的操作
// 操作 1 from flower : 一共有flower朵花,从from位置开始依次插入花朵,已经有花的瓶子跳过
//                     如果一直到最后的瓶子,花也没有用完,就丢弃剩下的花朵
//                     返回这次操作插入的首个空瓶的位置 和 最后空瓶的位置
//                     如果从from开始所有瓶子都有花,打印"Can not put any one."
// 操作 2 left right  : 从left位置开始到right位置的瓶子,变回空瓶,返回清理花朵的数量
// 测试链接 : https://acm.hdu.edu.cn/showproblem.php?pid=4614
// 请同学们务必参考如下代码中关于输入、输出的处理
// 这是输入输出处理效率很高的写法
// 提交以下的code,提交时请把类名改成"Main",可以直接通过import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;public class Code02_VasesAndFlowers {public static int MAXN = 50001;public static int[] sum = new int[MAXN << 2];public static int[] change = new int[MAXN << 2];public static boolean[] update = new boolean[MAXN << 2];public static int n;public static void up(int i) {sum[i] = sum[i << 1] + sum[i << 1 | 1];}public static void down(int i, int ln, int rn) {if (update[i]) {lazy(i << 1, change[i], ln);lazy(i << 1 | 1, change[i], rn);update[i] = false;}}public static void lazy(int i, int v, int n) {sum[i] = v * n;change[i] = v;update[i] = true;}public static void build(int l, int r, int i) {if (l < r) {int mid = (l + r) >> 1;build(l, mid, i << 1);build(mid + 1, r, i << 1 | 1);}sum[i] = 0;update[i] = false;}public static void update(int jobl, int jobr, int jobv, int l, int r, int i) {if (jobl <= l && r <= jobr) {lazy(i, jobv, r - l + 1);} else {int mid = (l + r) >> 1;down(i, mid - l + 1, r - mid);if (jobl <= mid) {update(jobl, jobr, jobv, l, mid, i << 1);}if (jobr > mid) {update(jobl, jobr, jobv, mid + 1, r, i << 1 | 1);}up(i);}}public static int query(int jobl, int jobr, int l, int r, int i) {if (jobl <= l && r <= jobr) {return sum[i];}int mid = (l + r) >> 1;down(i, mid - l + 1, r - mid);int ans = 0;if (jobl <= mid) {ans += query(jobl, jobr, l, mid, i << 1);}if (jobr > mid) {ans += query(jobl, jobr, mid + 1, r, i << 1 | 1);}return ans;}public static int[] insert(int from, int flowers) {// 题目给的位置从0开始// 线段树下标从1开始from++;int start, end;int zeros = n - from + 1 - query(from, n, 1, n, 1);if (zeros == 0) {start = 0;end = 0;} else {start = findZero(from, 1);end = findZero(from, Math.min(zeros, flowers));update(start, end, 1, 1, n, 1);}// 题目需要从0开始的下标start--;end--;return new int[] { start, end };}// s~n范围上// 返回第k个0的位置public static int findZero(int s, int k) {int l = s, r = n, mid;int ans = 0;while (l <= r) {mid = (l + r) >> 1;if (mid - s + 1 - query(s, mid, 1, n, 1) >= k) {ans = mid;r = mid - 1;} else {l = mid + 1;}}return ans;}// 注意题目给的下标从0开始// 线段树下标从1开始public static int clear(int left, int right) {left++;right++;int ans = query(left, right, 1, n, 1);update(left, right, 0, 1, n, 1);return ans;}public static void main(String[] args) throws IOException {BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));in.nextToken();int t = (int) in.nval;for (int i = 1; i <= t; i++) {in.nextToken();n = (int) in.nval;in.nextToken();int m = (int) in.nval;build(1, n, 1);for (int j = 1; j <= m; j++) {in.nextToken();int op = (int) in.nval;if (op == 1) {in.nextToken();int from = (int) in.nval;in.nextToken();int flowers = (int) in.nval;int[] ans = insert(from, flowers);if (ans[0] == -1) {out.println("Can not put any one.");} else {out.println(ans[0] + " " + ans[1]);}} else {in.nextToken();int left = (int) in.nval;in.nextToken();int right = (int) in.nval;out.println(clear(left, right));}}out.println();}out.flush();out.close();br.close();}}

P4145 上帝造题的七分钟 2 / 花神游历各国 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

1.此题的修改操作不能通过O(1)的时间完成,只能暴力求解

2.当一段范围的最大值为1时,此时就不需要执行开平发操作了,所以就可以剪枝了(此处的剪枝不是简单的优化常数时间,他减少了遍历规模)

3.数值的最大值为10^12,最多开6次就到1了;而将一个节点开到1,需要遍历6*树高的规模,所以1-n的线段树总势能为n*6*logn,因为有剪枝,所以这就是遍历到的规模。操作次数为m,均摊的时间复杂度为O(logn)

// 范围上开平方并求累加和
// 给定一个长度为n的数组arr,实现以下两种类型的操作
// 操作 0 l r : 把arr[l..r]范围上的每个数开平方,结果向下取整
// 操作 1 l r : 查询arr[l..r]范围上所有数字的累加和
// 两种操作一共发生m次,数据中有可能l>r,遇到这种情况请交换l和r
// 1 <= n, m <= 10^5,1 <= arr[i] <= 10^12
// 测试链接 : https://www.luogu.com.cn/problem/P4145
// 请同学们务必参考如下代码中关于输入、输出的处理
// 这是输入输出处理效率很高的写法
// 提交以下的code,提交时请把类名改成"Main",可以直接通过import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;public class Main {public static int MAXN = 100001;public static long[] arr = new long[MAXN];public static long[] sum = new long[MAXN << 2];public static long[] max = new long[MAXN << 2];public static void up(int i) {sum[i] = sum[i << 1] + sum[i << 1 | 1];max[i] = Math.max(max[i << 1], max[i << 1 | 1]);}public static void build(int l, int r, int i) {if (l == r) {sum[i] = arr[l];max[i] = arr[l];} else {int mid = (l + r) >> 1;build(l, mid, i << 1);build(mid + 1, r, i << 1 | 1);up(i);}}// sqrt方法是最核心的// 注意和常规线段树不一样,这里没有懒更新,也就不需要有down方法// 只有根据范围最大值信息的剪枝// 时间复杂度的分析就是课上讲的势能分析// 不用纠结单次调用的复杂度// 哪怕调用再多次sqrt方法,总的时间复杂度也就是O(n * 6 * logn)public static void sqrt(int jobl, int jobr, int l, int r, int i) {if (l == r) {long sqrt = (long) Math.sqrt(max[i]);sum[i] = sqrt;max[i] = sqrt;} else {int mid = (l + r) >> 1;if (jobl <= mid && max[i << 1] > 1) {sqrt(jobl, jobr, l, mid, i << 1);}if (jobr > mid && max[i << 1 | 1] > 1) {sqrt(jobl, jobr, mid + 1, r, i << 1 | 1);}up(i);}}// 没有懒更新// 不需要调用down方法public static long query(int jobl, int jobr, int l, int r, int i) {if (jobl <= l && r <= jobr) {return sum[i];}int mid = (l + r) >> 1;long ans = 0;if (jobl <= mid) {ans += query(jobl, jobr, l, mid, i << 1);}if (jobr > mid) {ans += query(jobl, jobr, mid + 1, r, i << 1 | 1);}return ans;}public static void main(String[] args) throws IOException {BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));in.nextToken();int n = (int) in.nval;for (int i = 1; i <= n; i++) {in.nextToken();arr[i] = (long) in.nval;}build(1, n, 1);in.nextToken();int m = (int) in.nval;for (int i = 1, op, jobl, jobr, tmp; i <= m; i++) {in.nextToken();op = (int) in.nval;in.nextToken();jobl = (int) in.nval;in.nextToken();jobr = (int) in.nval;if (jobl > jobr) {tmp = jobl;jobl = jobr;jobr = tmp;}if (op == 0) {sqrt(jobl, jobr, 1, n, 1);} else {out.println(query(jobl, jobr, 1, n, 1));}}out.flush();out.close();br.close();}}

The Child and Sequence - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

1.一个数不停的取模logv次就到1了

2.总势能:

 

// 包含取模操作的线段树
// 给定一个长度为n的数组arr,实现如下三种操作,一共调用m次
// 操作 1 l r : 查询arr[l..r]的累加和
// 操作 2 l r x : 把arr[l..r]上每个数字对x取模
// 操作 3 k x : 把arr[k]上的数字设置为x
// 1 <= n, m <= 10^5,操作1得到的结果,有可能超过int范围
// 测试链接 : https://www.luogu.com.cn/problem/CF438D
// 请同学们务必参考如下代码中关于输入、输出的处理
// 这是输入输出处理效率很高的写法
// 提交以下的code,提交时请把类名改成"Main",可以直接通过import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;public class Main {public static int MAXN = 100001;public static int[] arr = new int[MAXN];public static long[] sum = new long[MAXN << 2];public static int[] max = new int[MAXN << 2];public static void up(int i) {sum[i] = sum[i << 1] + sum[i << 1 | 1];max[i] = Math.max(max[i << 1], max[i << 1 | 1]);}public static void build(int l, int r, int i) {if (l == r) {sum[i] = max[i] = arr[l];} else {int mid = (l + r) >> 1;build(l, mid, i << 1);build(mid + 1, r, i << 1 | 1);up(i);}}public static long query(int jobl, int jobr, int l, int r, int i) {if (jobl <= l && r <= jobr) {return sum[i];}int mid = (l + r) >> 1;long ans = 0;if (jobl <= mid) {ans += query(jobl, jobr, l, mid, i << 1);}if (jobr > mid) {ans += query(jobl, jobr, mid + 1, r, i << 1 | 1);}return ans;}public static void mod(int jobl, int jobr, int jobv, int l, int r, int i) {if (jobv > max[i]) {return;}if (l == r) {sum[i] %= jobv;max[i] %= jobv;} else {int mid = (l + r) >> 2;if (jobl <= mid) {mod(jobl, jobr, jobv, l, mid, i << 1);}if (jobr > mid) {mod(jobl, jobr, jobv, mid + 1, r, i << 1 | 1);}up(i);}}public static void update(int jobi, int jobv, int l, int r, int i) {if (l == r) {sum[i] = max[i] = jobv;} else {int mid = (l + r) >> 1;if (jobi <= mid) {update(jobi, jobv, l, mid, i << 1);} else {update(jobi, jobv, mid + 1, r, i << 1 | 1);}up(i);}}public static void main(String[] args) throws IOException {BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));in.nextToken();int n = (int) in.nval;in.nextToken();int m = (int) in.nval;for (int i = 1; i <= n; i++) {in.nextToken();arr[i] = (int) in.nval;}build(1, n, 1);for (int i = 1, op; i <= m; i++) {in.nextToken();op = (int) in.nval;if (op == 1) {in.nextToken();int jobl = (int) in.nval;in.nextToken();int jobr = (int) in.nval;out.println(query(jobl, jobr, 1, n, 1));} else if (op == 2) {in.nextToken();int jobl = (int) in.nval;in.nextToken();int jobr = (int) in.nval;in.nextToken();int jobv = (int) in.nval;mod(jobl, jobr, jobv, 1, n, 1);} else {in.nextToken();int jobi = (int) in.nval;in.nextToken();int jobv = (int) in.nval;update(jobi, jobv, 1, n, 1);}}out.flush();out.close();br.close();}}

P3740 [HAOI2014] 贴海报 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

1.不需要up函数:因为up函数是用来随时查询用的,而此题只需要查询一次

// 贴海报
// 有一面墙,有固定高度,长度为n,有m张海报,所有海报的高度都和墙的高度相同
// 从第1张海报开始,一张一张往墙上贴,直到n张海报贴完
// 每张海报都给出张贴位置(xi, yi),表示第i张海报从墙的左边界xi一直延伸到右边界yi
// 有可能发生后面的海报把前面的海报完全覆盖,导致看不到的情况
// 当所有海报贴完,返回能看到海报的数量,哪怕只漏出一点的海报都算
// 1 <= n、xi、yi <= 10^7,1 <= m <= 10^3
// 测试链接 : https://www.luogu.com.cn/problem/P3740
// 请同学们务必参考如下代码中关于输入、输出的处理
// 这是输入输出处理效率很高的写法
// 提交以下的code,提交时请把类名改成"Main",可以直接通过import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.util.Arrays;public class Main {public static int MAXM = 1001;public static int[] pl = new int[MAXM];public static int[] pr = new int[MAXM];public static int[] num = new int[MAXM*3];// 线段树的某个范围上是否被设置成了统一的海报// 如果poster[i] != 0,poster[i]表示统一海报的编号// 如果poster[i] == 0,表示该范围上没有海报或者海报编号没统一public static int[] poster = new int[MAXM << 4];// 某种海报编号是否已经被统计过了// 只在最后一次查询,最后统计海报数量的阶段时候使用public static boolean[] visited = new boolean[MAXM];public static int collect(int m) {Arrays.sort(num, 1, m + 1);int size = 1;for (int i = 2; i <= m; i++) {if (num[size] != num[i]) {num[++size] = num[i];}}int cnt = size;for (int i = 2; i <= size; i++) {if (num[i - 1] + 1 < num[i]) {num[++cnt] = num[i - 1] + 1;}}Arrays.sort(num, 1, cnt + 1);return cnt;}public static int rank(int l, int r, int v) {int m;int ans = 0;while (l <= r) {m = (l + r) >> 1;if (num[m] >= v) {ans = m;r = m - 1;} else {l = m + 1;}}return ans;}public static void down(int i) {if (poster[i] != 0) {poster[i << 1] = poster[i];poster[i << 1 | 1] = poster[i];poster[i] = 0;}}public static void build(int l, int r, int i) {if (l < r) {int mid = (l + r) >> 1;build(l, mid, i << 1);build(mid + 1, r, i << 1 | 1);}poster[i] = 0;}public static void update(int jobl, int jobr, int jobv, int l, int r, int i) {if (jobl <= l && r <= jobr) {poster[i] = jobv;} else {down(i);int mid = (l + r) >> 1;if (jobl <= mid) {update(jobl, jobr, jobv, l, mid, i << 1);}if (jobr > mid) {update(jobl, jobr, jobv, mid + 1, r, i << 1 | 1);}}}public static int query(int jobl, int jobr, int l, int r, int i) {if (l == r) {if (poster[i] != 0 && !visited[poster[i]]) {visited[poster[i]] = true;return 1;} else {return 0;}} else {down(i);int mid = (l + r) >> 1;int ans = 0;if (jobl <= mid) {ans += query(jobl, jobr, l, mid, i << 1);}if (jobr > mid) {ans += query(jobl, jobr, mid + 1, r, i << 1 | 1);}return ans;}}public static void main(String[] args) throws IOException {BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));in.nextToken();int n = (int) in.nval;int size = 0;num[++size] = n;in.nextToken();int m = (int) in.nval;for (int i = 1; i <= m; i++) {in.nextToken();pl[i] = (int) in.nval;in.nextToken();pr[i] = (int) in.nval;num[++size] = pl[i];num[++size] = pr[i];}size = collect(size);build(1, size, 1);for (int i = 1, jobl, jobr; i <= m; i++) {jobl = rank(1, size, pl[i]);jobr = rank(1, size, pr[i]);update(jobl, jobr, i, 1, size, 1);}out.println(query(1, rank(1, size, n), 1, size, 1));out.flush();out.close();br.close();}}

这篇关于线段树离散化、二分搜索、特别修改的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1125228

相关文章

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

hdu1689(线段树成段更新)

两种操作:1、set区间[a,b]上数字为v;2、查询[ 1 , n ]上的sum 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdl

hdu 1754 I Hate It(线段树,单点更新,区间最值)

题意是求一个线段中的最大数。 线段树的模板题,试用了一下交大的模板。效率有点略低。 代码: #include <stdio.h>#include <string.h>#define TREE_SIZE (1 << (20))//const int TREE_SIZE = 200000 + 10;int max(int a, int b){return a > b ? a :

hdu 1166 敌兵布阵(树状数组 or 线段树)

题意是求一个线段的和,在线段上可以进行加减的修改。 树状数组的模板题。 代码: #include <stdio.h>#include <string.h>const int maxn = 50000 + 1;int c[maxn];int n;int lowbit(int x){return x & -x;}void add(int x, int num){while

poj 2976 分数规划二分贪心(部分对总体的贡献度) poj 3111

poj 2976: 题意: 在n场考试中,每场考试共有b题,答对的题目有a题。 允许去掉k场考试,求能达到的最高正确率是多少。 解析: 假设已知准确率为x,则每场考试对于准确率的贡献值为: a - b * x,将贡献值大的排序排在前面舍弃掉后k个。 然后二分x就行了。 代码: #include <iostream>#include <cstdio>#incl