python基础-生成器进阶(send、from)、各种推导式、生成器表达式

2024-08-31 22:48

本文主要是介绍python基础-生成器进阶(send、from)、各种推导式、生成器表达式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        • yield回顾
        • send
        • 生成器结合装饰器
        • yield from
        • 列表推导式
        • 字典推导式
        • 集合推导式
        • 生成器表达式

yield回顾
def cloth():for i in range(10):yield  '衣服%s'%ig = cloth()
for i in g:print(i)g = cloth()
for i in range(10):print(g.__next__())g = cloth()
lst = list(g)
for  i in lst:print(i)def method():yield 2,3,4y = method()
for i in y.__next__():print(i)

输出如下:

E:\python\python_sdk\python.exe E:/python/py_pro/2生成器函数.py
衣服0
衣服1
衣服2
衣服3
衣服4
衣服0
衣服1
衣服2
衣服3
衣服4
衣服0
衣服1
衣服2
衣服3
衣服42
3
4
send
def func():print('*'*10)a = yield 5print('a : ',a)yield 10
g = func()
num = g.__next__()
print(num)
num = g.__next__()
print(num)

输出如下:

E:\python\python_sdk\python.exe E:/python/py_pro/2生成器函数.py
**********
5
a :  None
10

我们看结果a:None是没有输出内容,是因为我们需要引入一个方法send
我们修改下代码如下:

def func():print('*'*10)a = yield 5print('a : ',a)yield 10
g = func()
num = g.__next__()
print(num)num2 = g.send('alex')
print(num2)

输出如下

E:\python\python_sdk\python.exe E:/python/py_pro/2生成器函数.py
**********
5
a :  alex
10

从哪一个yield开始接着执行,就把一个值传给了那个yield
send不能用在第一个触发生成器
生成器函数中有多少个yield就必须有多少个next+send

生成器结合装饰器

生成器的预激装饰器

def init(func):  #生成器的预激装饰器def inner(*args,**kwargs):g = func(*args,**kwargs)   #func = averagerprint(g.__next__())return greturn inner@init
def averager():term = yield 0print(term)yield 1g_avg = averager()
print(g_avg.send(19))

输出如下:

E:\python\python_sdk\python.exe E:/python/py_pro/2生成器函数.py
0
19
1
yield from

我们来看下面的一个错误的例子

def func():a = 1yield from ag = func()
print(g.__next__())

错误日志如下:

  File "E:/python/py_pro/2生成器函数.py", line 18, in <module>print(g.__next__())File "E:/python/py_pro/2生成器函数.py", line 14, in funcyield from a
TypeError: 'int' object is not iterable

说明是必须可以迭代的

def func():a = "safly"yield from ag = func()
for i in g:print(i)

输出如下:

s
a
f
l
y

当然其他的元组、列表也是可以的


print("-------列表-----")
def func():a = [1,2,3]yield from ag = func()
print(g.__next__())
print(g.__next__())
print(g.__next__())
print("-------元组-----")
def func():a = (1,2,3)yield from a
g = func()
for i in g:print(i)print("-------字典-----")
def func():a = {"a":1,"b":2}yield from ag = func()
for i in g:print(i)
print("-------组合-----")
def func():a = 'AB'b = [1,2]yield from ayield from by = func()
print(y.__next__())
print(y.__next__())
print(y.__next__())
print(y.__next__())

输出如下:

E:\python\python_sdk\python.exe E:/python/py_pro/2生成器函数.py
-------列表-----
1
2
3
-------元组-----
1
2
3
-------字典-----
a
b
-------组合-----
A
B
1
2Process finished with exit code 0
列表推导式
y = [1,2,3,4,5,6,7,8]
x = [i*i for i in y]
print(x)x2 = [i/2 for i in range(10)]
print(x2)

输出如下:

E:\python\python_sdk\python.exe E:/python/py_pro/3生成器表达式.py
[1, 4, 9, 16, 25, 36, 49, 64]
[0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5]

继续看列表推导式带if条件的

print(list(range(0,30,3)))
print([i for i in range(30) if i%3 == 0])

输出如下:

[0, 3, 6, 9, 12, 15, 18, 21, 24, 27]
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27]
字典推导式
mcase = {'a': 10, 'b': 34}
mcase_frequency = {mcase[k]:k for k in mcase}
print(mcase_frequency)mcase = {'a': 10, 'b': 34, 'A': 7, 'Z': 3}
mcase_frequency = {k.lower(): (mcase.get(k.lower(), 0) + mcase.get(k.upper(), 0)) for k in mcase}
print(mcase_frequency)

输出如下:

E:\python\python_sdk\python.exe E:/python/py_pro/4各种推导式扩展.py
{10: 'a', 34: 'b'}
{'a': 17, 'b': 34, 'z': 3}
集合推导式
squared = {x**2 for x in [1, -1, 2]}   #{1,4}
print(squared)

输出如下:

E:\python\python_sdk\python.exe E:/python/py_pro/4各种推导式扩展.py
{1, 4}
生成器表达式
y = [1,2,4]
g = (i*i for i in y)
print(g)
print(list(g))y = [1,2,4]
g = (i*i for i in y)
for i in g:print(i)

输出如下:

E:\python\python_sdk\python.exe E:/python/py_pro/3生成器表达式.py
<generator object <genexpr> at 0x03116240>
[1, 4, 16]
1
4
16

这篇关于python基础-生成器进阶(send、from)、各种推导式、生成器表达式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1125216

相关文章

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf