python基础-迭代器、for底层机制、生成器、list结合yield、__call__、yield函数列表

本文主要是介绍python基础-迭代器、for底层机制、生成器、list结合yield、__call__、yield函数列表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        • 迭代器概念
        • for底层机制
        • 生成器
          • 最简单的生成器
          • 返回列表字典元组等
          • 返回多个值构成元组
        • 返回一个函数列表
          • list结合yield
        • _call_
          • 多个yield形式

迭代器概念

可迭代的必须含有一个iter方法(可迭代协议)
迭代器比可迭代对象多一个next方法
包含next方法的可迭代对象就是迭代器
迭代器:包含next,iter方法的就是迭代器(迭代器协议)
迭代器是可迭代的一部分

#爬虫作业#获取列表的方法
print(dir(["safly"]))
#拿到迭代器
print("abc".__iter__())#依次取值
ite = "abc".__iter__()
print(ite.__next__())
print(ite.__next__())
print(ite.__next__())#可迭代对象、迭代器
print("------")
l = ["a"]
print(dir(l))
print(dir(l.__iter__()))
#多3个方法
#{'__length_hint__', '__next__', '__setstate__'}
print(set(dir(l.__iter__()))- set(dir(l)))#1、如何判断是否是可迭代对象或者迭代器?
print("__iter__" in dir('sss'))
print("__next__" in dir("sss"))#2、如何判断是否是可迭代对象或者迭代器?
from collections import  Iterable
from collections import  Iterator
print(isinstance("a",int))
print(isinstance("a",Iterable))str_  = "abc".__iter__()
print(isinstance(str_,Iterator))

输出如下:

E:\python\python_sdk\python.exe E:/python/py_pro/1103.py
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
<str_iterator object at 0x02EC1690>
a
b
c
------
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
['__class__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__length_hint__', '__lt__', '__ne__', '__new__', '__next__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__setstate__', '__sizeof__', '__str__', '__subclasshook__']
{'__setstate__', '__length_hint__', '__next__'}
True
False
False
True
TrueProcess finished with exit code 0
for底层机制
li = [1,3,4,5]
it = li.__iter__()
while True:try:print(it.__next__())except StopIteration:break

输出如下:

1
3
4
5
生成器

生成器的本质就是迭代器
只不过是我们自己写的python代码
生成器2种方式
1、生成器函数
2、生成器表达式
生成器函数,调用不执行,而是返回一个生成器,是一个迭代器

最简单的生成器
def g_func():print("---g_func---")yield 1g = g_func()
print(g)
print(g.__next__())

输出如下:

<generator object g_func at 0x03006540>
---g_func---
1

返回了一个值1

返回列表,字典,元组等
def g_func():print("---g_func---")yield [1,2,3]g = g_func()
print(g)
print(g.__next__())

输出如下:

<generator object g_func at 0x02A862A0>
---g_func---
[1, 2, 3]

我们看下是返回了一个列表[1, 2, 3]

返回多个值,构成元组
def cloth(a):print("aaaa")cloth = ayield "第{}件衣服".format(cloth),"yyyyy"g = cloth(100)
h = g.__next__()
print(h)
print("------")
print(type(h))
print("------")
for i in h:print(i)

输出如下:

aaaa
('第100件衣服', 'yyyyy')
------
<class 'tuple'>
------
第100件衣服
yyyyy
返回一个函数列表
def yie():def a():print("--a")def b():print("--b")yield [a,b]yie = yie()
next = yie.__next__()
print(next)next[0].__call__()
next[0]()next[1].__call__()
next[1]()print("------------")def a():print('调用')x = a
x.__call__()
x()

输出如下:

E:\python\python_sdk\python.exe E:/python/py_pro/1104.py
[<function yie.<locals>.a at 0x009BD660>, <function yie.<locals>.b at 0x00B028E8>]
--a
--a
--b
--b
------------
调用
调用Process finished with exit code 0
list结合yield
def aaa():yield 1,2yield (3,4)yield {"a":"b"}yield "saf"yield 1yield Truey = list(aaa())
print(y)y = aaa()
print(y.__next__())
print(y.__next__())
print(y.__next__())
print(y.__next__())
print(y.__next__())
print(y.__next__())

输出如下:

E:\python\python_sdk\python.exe E:/python/py_pro/1104.py
[(1, 2), (3, 4), {'a': 'b'}, 'saf', 1, True]
(1, 2)
(3, 4)
{'a': 'b'}
saf
1
TrueProcess finished with exit code 0
_call_
def a():print("--a")def b():print("--b")lis = [a,b]ite = lis.__iter__()
ite.__next__().__call__()
ite.__next__().__call__()

输出如下:

E:\python\python_sdk\python.exe E:/python/py_pro/1104.py
--a
--bProcess finished with exit code 0
多个yield形式
def g_func():print("---g_func1---")yield [1,2]print("---g_func2---")print("---g_func3---")yield [3,4]print("---g_func4---")g = g_func()
print(g)
print(g.__next__())
print(g.__next__())

输出如下:

<generator object g_func at 0x039E62A0>
---g_func1---
[1, 2]
---g_func2---
---g_func3---
[3, 4]

这篇关于python基础-迭代器、for底层机制、生成器、list结合yield、__call__、yield函数列表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1125212

相关文章

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

java中反射(Reflection)机制举例详解

《java中反射(Reflection)机制举例详解》Java中的反射机制是指Java程序在运行期间可以获取到一个对象的全部信息,:本文主要介绍java中反射(Reflection)机制的相关资料... 目录一、什么是反射?二、反射的用途三、获取Class对象四、Class类型的对象使用场景1五、Class

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ