python基础-迭代器、for底层机制、生成器、list结合yield、__call__、yield函数列表

本文主要是介绍python基础-迭代器、for底层机制、生成器、list结合yield、__call__、yield函数列表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        • 迭代器概念
        • for底层机制
        • 生成器
          • 最简单的生成器
          • 返回列表字典元组等
          • 返回多个值构成元组
        • 返回一个函数列表
          • list结合yield
        • _call_
          • 多个yield形式

迭代器概念

可迭代的必须含有一个iter方法(可迭代协议)
迭代器比可迭代对象多一个next方法
包含next方法的可迭代对象就是迭代器
迭代器:包含next,iter方法的就是迭代器(迭代器协议)
迭代器是可迭代的一部分

#爬虫作业#获取列表的方法
print(dir(["safly"]))
#拿到迭代器
print("abc".__iter__())#依次取值
ite = "abc".__iter__()
print(ite.__next__())
print(ite.__next__())
print(ite.__next__())#可迭代对象、迭代器
print("------")
l = ["a"]
print(dir(l))
print(dir(l.__iter__()))
#多3个方法
#{'__length_hint__', '__next__', '__setstate__'}
print(set(dir(l.__iter__()))- set(dir(l)))#1、如何判断是否是可迭代对象或者迭代器?
print("__iter__" in dir('sss'))
print("__next__" in dir("sss"))#2、如何判断是否是可迭代对象或者迭代器?
from collections import  Iterable
from collections import  Iterator
print(isinstance("a",int))
print(isinstance("a",Iterable))str_  = "abc".__iter__()
print(isinstance(str_,Iterator))

输出如下:

E:\python\python_sdk\python.exe E:/python/py_pro/1103.py
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
<str_iterator object at 0x02EC1690>
a
b
c
------
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
['__class__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__length_hint__', '__lt__', '__ne__', '__new__', '__next__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__setstate__', '__sizeof__', '__str__', '__subclasshook__']
{'__setstate__', '__length_hint__', '__next__'}
True
False
False
True
TrueProcess finished with exit code 0
for底层机制
li = [1,3,4,5]
it = li.__iter__()
while True:try:print(it.__next__())except StopIteration:break

输出如下:

1
3
4
5
生成器

生成器的本质就是迭代器
只不过是我们自己写的python代码
生成器2种方式
1、生成器函数
2、生成器表达式
生成器函数,调用不执行,而是返回一个生成器,是一个迭代器

最简单的生成器
def g_func():print("---g_func---")yield 1g = g_func()
print(g)
print(g.__next__())

输出如下:

<generator object g_func at 0x03006540>
---g_func---
1

返回了一个值1

返回列表,字典,元组等
def g_func():print("---g_func---")yield [1,2,3]g = g_func()
print(g)
print(g.__next__())

输出如下:

<generator object g_func at 0x02A862A0>
---g_func---
[1, 2, 3]

我们看下是返回了一个列表[1, 2, 3]

返回多个值,构成元组
def cloth(a):print("aaaa")cloth = ayield "第{}件衣服".format(cloth),"yyyyy"g = cloth(100)
h = g.__next__()
print(h)
print("------")
print(type(h))
print("------")
for i in h:print(i)

输出如下:

aaaa
('第100件衣服', 'yyyyy')
------
<class 'tuple'>
------
第100件衣服
yyyyy
返回一个函数列表
def yie():def a():print("--a")def b():print("--b")yield [a,b]yie = yie()
next = yie.__next__()
print(next)next[0].__call__()
next[0]()next[1].__call__()
next[1]()print("------------")def a():print('调用')x = a
x.__call__()
x()

输出如下:

E:\python\python_sdk\python.exe E:/python/py_pro/1104.py
[<function yie.<locals>.a at 0x009BD660>, <function yie.<locals>.b at 0x00B028E8>]
--a
--a
--b
--b
------------
调用
调用Process finished with exit code 0
list结合yield
def aaa():yield 1,2yield (3,4)yield {"a":"b"}yield "saf"yield 1yield Truey = list(aaa())
print(y)y = aaa()
print(y.__next__())
print(y.__next__())
print(y.__next__())
print(y.__next__())
print(y.__next__())
print(y.__next__())

输出如下:

E:\python\python_sdk\python.exe E:/python/py_pro/1104.py
[(1, 2), (3, 4), {'a': 'b'}, 'saf', 1, True]
(1, 2)
(3, 4)
{'a': 'b'}
saf
1
TrueProcess finished with exit code 0
_call_
def a():print("--a")def b():print("--b")lis = [a,b]ite = lis.__iter__()
ite.__next__().__call__()
ite.__next__().__call__()

输出如下:

E:\python\python_sdk\python.exe E:/python/py_pro/1104.py
--a
--bProcess finished with exit code 0
多个yield形式
def g_func():print("---g_func1---")yield [1,2]print("---g_func2---")print("---g_func3---")yield [3,4]print("---g_func4---")g = g_func()
print(g)
print(g.__next__())
print(g.__next__())

输出如下:

<generator object g_func at 0x039E62A0>
---g_func1---
[1, 2]
---g_func2---
---g_func3---
[3, 4]

这篇关于python基础-迭代器、for底层机制、生成器、list结合yield、__call__、yield函数列表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1125212

相关文章

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

Mybatis官方生成器的使用方式

《Mybatis官方生成器的使用方式》本文详细介绍了MyBatisGenerator(MBG)的使用方法,通过实际代码示例展示了如何配置Maven插件来自动化生成MyBatis项目所需的实体类、Map... 目录1. MyBATis Generator 简介2. MyBatis Generator 的功能3

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

Python中@classmethod和@staticmethod的区别

《Python中@classmethod和@staticmethod的区别》本文主要介绍了Python中@classmethod和@staticmethod的区别,文中通过示例代码介绍的非常详细,对大... 目录1.@classmethod2.@staticmethod3.例子1.@classmethod