本文主要是介绍python基础-迭代器、for底层机制、生成器、list结合yield、__call__、yield函数列表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
-
-
-
- 迭代器概念
- for底层机制
- 生成器
- 最简单的生成器
- 返回列表字典元组等
- 返回多个值构成元组
- 返回一个函数列表
- list结合yield
- _call_
- 多个yield形式
-
-
迭代器概念
可迭代的必须含有一个iter方法(可迭代协议)
迭代器比可迭代对象多一个next方法
包含next方法的可迭代对象就是迭代器
迭代器:包含next,iter方法的就是迭代器(迭代器协议)
迭代器是可迭代的一部分
#爬虫作业#获取列表的方法
print(dir(["safly"]))
#拿到迭代器
print("abc".__iter__())#依次取值
ite = "abc".__iter__()
print(ite.__next__())
print(ite.__next__())
print(ite.__next__())#可迭代对象、迭代器
print("------")
l = ["a"]
print(dir(l))
print(dir(l.__iter__()))
#多3个方法
#{'__length_hint__', '__next__', '__setstate__'}
print(set(dir(l.__iter__()))- set(dir(l)))#1、如何判断是否是可迭代对象或者迭代器?
print("__iter__" in dir('sss'))
print("__next__" in dir("sss"))#2、如何判断是否是可迭代对象或者迭代器?
from collections import Iterable
from collections import Iterator
print(isinstance("a",int))
print(isinstance("a",Iterable))str_ = "abc".__iter__()
print(isinstance(str_,Iterator))
输出如下:
E:\python\python_sdk\python.exe E:/python/py_pro/1103.py
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
<str_iterator object at 0x02EC1690>
a
b
c
------
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
['__class__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__length_hint__', '__lt__', '__ne__', '__new__', '__next__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__setstate__', '__sizeof__', '__str__', '__subclasshook__']
{'__setstate__', '__length_hint__', '__next__'}
True
False
False
True
TrueProcess finished with exit code 0
for底层机制
li = [1,3,4,5]
it = li.__iter__()
while True:try:print(it.__next__())except StopIteration:break
输出如下:
1
3
4
5
生成器
生成器的本质就是迭代器
只不过是我们自己写的python代码
生成器2种方式
1、生成器函数
2、生成器表达式
生成器函数,调用不执行,而是返回一个生成器,是一个迭代器
最简单的生成器
def g_func():print("---g_func---")yield 1g = g_func()
print(g)
print(g.__next__())
输出如下:
<generator object g_func at 0x03006540>
---g_func---
1
返回了一个值1
返回列表,字典,元组等
def g_func():print("---g_func---")yield [1,2,3]g = g_func()
print(g)
print(g.__next__())
输出如下:
<generator object g_func at 0x02A862A0>
---g_func---
[1, 2, 3]
我们看下是返回了一个列表[1, 2, 3]
返回多个值,构成元组
def cloth(a):print("aaaa")cloth = ayield "第{}件衣服".format(cloth),"yyyyy"g = cloth(100)
h = g.__next__()
print(h)
print("------")
print(type(h))
print("------")
for i in h:print(i)
输出如下:
aaaa
('第100件衣服', 'yyyyy')
------
<class 'tuple'>
------
第100件衣服
yyyyy
返回一个函数列表
def yie():def a():print("--a")def b():print("--b")yield [a,b]yie = yie()
next = yie.__next__()
print(next)next[0].__call__()
next[0]()next[1].__call__()
next[1]()print("------------")def a():print('调用')x = a
x.__call__()
x()
输出如下:
E:\python\python_sdk\python.exe E:/python/py_pro/1104.py
[<function yie.<locals>.a at 0x009BD660>, <function yie.<locals>.b at 0x00B028E8>]
--a
--a
--b
--b
------------
调用
调用Process finished with exit code 0
list结合yield
def aaa():yield 1,2yield (3,4)yield {"a":"b"}yield "saf"yield 1yield Truey = list(aaa())
print(y)y = aaa()
print(y.__next__())
print(y.__next__())
print(y.__next__())
print(y.__next__())
print(y.__next__())
print(y.__next__())
输出如下:
E:\python\python_sdk\python.exe E:/python/py_pro/1104.py
[(1, 2), (3, 4), {'a': 'b'}, 'saf', 1, True]
(1, 2)
(3, 4)
{'a': 'b'}
saf
1
TrueProcess finished with exit code 0
_call_
def a():print("--a")def b():print("--b")lis = [a,b]ite = lis.__iter__()
ite.__next__().__call__()
ite.__next__().__call__()
输出如下:
E:\python\python_sdk\python.exe E:/python/py_pro/1104.py
--a
--bProcess finished with exit code 0
多个yield形式
def g_func():print("---g_func1---")yield [1,2]print("---g_func2---")print("---g_func3---")yield [3,4]print("---g_func4---")g = g_func()
print(g)
print(g.__next__())
print(g.__next__())
输出如下:
<generator object g_func at 0x039E62A0>
---g_func1---
[1, 2]
---g_func2---
---g_func3---
[3, 4]
这篇关于python基础-迭代器、for底层机制、生成器、list结合yield、__call__、yield函数列表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!