本文主要是介绍python基础-Manager进程数据共享、进程互斥锁数据非共享、线程互斥锁数据共享,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
-
-
- 线程数据共享无io
- 线程数据共享有io
- 线程锁数据共享
- 进程锁数据非共享
- 进程锁数据共享
-
1.线程抢的是GIL锁,GIL锁相当于执行权限,拿到执行权限后才能拿到互斥锁Lock,其他线程也可以抢到GIL,但如果发现Lock仍然没有被释放则阻塞,即便是拿到执行权限GIL也要立刻交出来
2.join是等待所有,即整体串行,而锁只是锁住修改共享数据的部分,即部分串行,要想保证数据安全的根本原理在于让并发变成串行,join与互斥锁都可以实现,毫无疑问,互斥锁的部分串行效率要更高
机智的同学可能会问到这个问题,就是既然你之前说过了,Python已经有一个GIL来保证同一时间只能有一个线程来执行了,为什么这里还需要lock?
首先我们需要达成共识:锁的目的是为了保护共享的数据,同一时间只能有一个线程来修改共享的数据
然后,我们可以得出结论:保护不同的数据就应该加不同的锁。
最后,问题就很明朗了,GIL 与Lock是两把锁,保护的数据不一样,前者是解释器级别的(当然保护的就是解释器级别的数据,比如垃圾回收的数据),后者是保护用户自己开发的应用程序的数据,很明显GIL不负责这件事,只能用户自定义加锁处理,即Lock
过程分析:所有线程抢的是GIL锁,或者说所有线程抢的是执行权限
线程1抢到GIL锁,拿到执行权限,开始执行,然后加了一把Lock,还没有执行完毕,即线程1还未释放Lock,有可能线程2抢到GIL锁,开始执行,执行过程中发现Lock还没有被线程1释放,于是线程2进入阻塞,被夺走执行权限,有可能线程1拿到GIL,然后正常执行到释放Lock。。。这就导致了串行运行的效果
既然是串行,那我们执行
t1.start()
t1.join
t2.start()
t2.join()
这也是串行执行啊,为何还要加Lock呢,需知join是等待t1所有的代码执行完,相当于锁住了t1的所有代码,而Lock只是锁住一部分操作共享数据的代码。
线程数据共享(无io)
from threading import Thread,Lock
import time
n=100def task():global ntemp=nn=temp-1if __name__ == '__main__':mutex=Lock()t_l=[]for i in range(10):t=Thread(target=task)t_l.append(t)t.start()for t in t_l:t.join()print(n)
输出结果:
90
在没有枷锁的情况下,是效率最高的,直接共同修改数据结果为90,但是有个情况,就是会使数据错乱,我们来看下线程锁的情况
线程数据共享(有io)
我们在上面的代码加入time.sleep(0.5)这行看看输出结果是什么?
from threading import Thread,Lock
import time
n=100def task():global ntemp=ntime.sleep(0.5)n=temp-1if __name__ == '__main__':mutex=Lock()t_l=[]for i in range(10):t=Thread(target=task)t_l.append(t)t.start()for t in t_l:t.join()print(n)
输出
99
在time.sleep(0.5)之前,各个线程已经拿到n=100值了,然后sleep之后,就没又获取新的temp值,然后利用n=temp-1,拿到n值99
线程锁数据共享
我们把上篇博客线程锁代码拿过来
from threading import Thread,Lock
import time
n=100def task():global nmutex.acquire()temp=ntime.sleep(0.1)n=temp-1mutex.release()if __name__ == '__main__':mutex=Lock()t_l=[]for i in range(10):t=Thread(target=task)t_l.append(t)t.start()for t in t_l:t.join()print(n)
输出如下:
90
如上是意思就是启动10个子线程,然后为10个子线程分别加线程互斥锁,操作变量n,然后在各个子线程执行完毕,在输出n的值为90,说明改变了共享变量n
由于多个线程公用一块内存,可以实现资源共享
1.10个线程去抢GIL锁,即抢执行权限
2. 肯定有一个线程先抢到GIL(暂且称为线程1),然后开始执行,一旦执行就会拿到lock.acquire()
3. 极有可能线程1还未运行完毕,就有另外一个线程2抢到GIL,然后开始运行,但线程2发现互斥锁lock还未被线程1释放,于是阻塞,被迫交出执行权限,即释放GIL
4.直到线程1重新抢到GIL,开始从上次暂停的位置继续执行,直到正常释放互斥锁lock,然后其他的线程再重复2 3 4的过程
进程锁数据非共享
from multiprocessing import Process,Lock
import time
n=100def task(mutex):global nmutex.acquire()temp=ntime.sleep(0.1)n=temp-1mutex.release()if __name__ == '__main__':mutex=Lock()t_l=[]for i in range(10):t=Process(target=task,args=(mutex,))t_l.append(t)t.start()for t in t_l:t.join()print(n)
输出:
100
由于是启动了10 个进程,那么就开辟了10快内存空间,每个进程会在自己内存空间操作变量n,但是最后print(n)是输出的主进程的n值,所以子进程没有操作修改主进程的n值,所以输出100
进程锁数据共享
那么我们如何通过进程修改呢?
进程间数据是独立的,可以借助于队列或管道实现通信,二者都是基于消息传递的
我们篇幅博客在了解学习
虽然进程间数据独立,但可以通过Manager实现数据共享,事实上Manager的功能远不止于此
Manager支持的类型有list,dict,Namespace,Lock,RLock,Semaphore,BoundedSemaphore,Condition,Event,Queue,Value和Array。
from multiprocessing import Manager,Process,Lock
import os
def work(d,lock):with lock: #不加锁而操作共享的数据,肯定会出现数据错乱d['count']-=1if __name__ == '__main__':lock=Lock()with Manager() as m:dic=m.dict({'count':10})p_l=[]for i in range(10):p=Process(target=work,args=(dic,lock))p_l.append(p)p.start()for p in p_l:p.join()print(dic)
输出如下:
{'count': 0}
这篇关于python基础-Manager进程数据共享、进程互斥锁数据非共享、线程互斥锁数据共享的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!