python基础-Manager进程数据共享、进程互斥锁数据非共享、线程互斥锁数据共享

本文主要是介绍python基础-Manager进程数据共享、进程互斥锁数据非共享、线程互斥锁数据共享,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

      • 线程数据共享无io
      • 线程数据共享有io
      • 线程锁数据共享
      • 进程锁数据非共享
      • 进程锁数据共享

1.线程抢的是GIL锁,GIL锁相当于执行权限,拿到执行权限后才能拿到互斥锁Lock,其他线程也可以抢到GIL,但如果发现Lock仍然没有被释放则阻塞,即便是拿到执行权限GIL也要立刻交出来

2.join是等待所有,即整体串行,而锁只是锁住修改共享数据的部分,即部分串行,要想保证数据安全的根本原理在于让并发变成串行,join与互斥锁都可以实现,毫无疑问,互斥锁的部分串行效率要更高

机智的同学可能会问到这个问题,就是既然你之前说过了,Python已经有一个GIL来保证同一时间只能有一个线程来执行了,为什么这里还需要lock? 

 首先我们需要达成共识:锁的目的是为了保护共享的数据,同一时间只能有一个线程来修改共享的数据

然后,我们可以得出结论:保护不同的数据就应该加不同的锁。

 最后,问题就很明朗了,GIL 与Lock是两把锁,保护的数据不一样,前者是解释器级别的(当然保护的就是解释器级别的数据,比如垃圾回收的数据),后者是保护用户自己开发的应用程序的数据,很明显GIL不负责这件事,只能用户自定义加锁处理,即Lock

过程分析:所有线程抢的是GIL锁,或者说所有线程抢的是执行权限

  线程1抢到GIL锁,拿到执行权限,开始执行,然后加了一把Lock,还没有执行完毕,即线程1还未释放Lock,有可能线程2抢到GIL锁,开始执行,执行过程中发现Lock还没有被线程1释放,于是线程2进入阻塞,被夺走执行权限,有可能线程1拿到GIL,然后正常执行到释放Lock。。。这就导致了串行运行的效果

  既然是串行,那我们执行

  t1.start()

  t1.join

  t2.start()

  t2.join()

  这也是串行执行啊,为何还要加Lock呢,需知join是等待t1所有的代码执行完,相当于锁住了t1的所有代码,而Lock只是锁住一部分操作共享数据的代码。

线程数据共享(无io)

from threading import Thread,Lock
import time
n=100def task():global ntemp=nn=temp-1if __name__ == '__main__':mutex=Lock()t_l=[]for i in range(10):t=Thread(target=task)t_l.append(t)t.start()for t in t_l:t.join()print(n)

输出结果:

90

在没有枷锁的情况下,是效率最高的,直接共同修改数据结果为90,但是有个情况,就是会使数据错乱,我们来看下线程锁的情况

线程数据共享(有io)

我们在上面的代码加入time.sleep(0.5)这行看看输出结果是什么?


from threading import Thread,Lock
import time
n=100def task():global ntemp=ntime.sleep(0.5)n=temp-1if __name__ == '__main__':mutex=Lock()t_l=[]for i in range(10):t=Thread(target=task)t_l.append(t)t.start()for t in t_l:t.join()print(n)

输出

99

在time.sleep(0.5)之前,各个线程已经拿到n=100值了,然后sleep之后,就没又获取新的temp值,然后利用n=temp-1,拿到n值99

线程锁数据共享

我们把上篇博客线程锁代码拿过来

from threading import Thread,Lock
import time
n=100def task():global nmutex.acquire()temp=ntime.sleep(0.1)n=temp-1mutex.release()if __name__ == '__main__':mutex=Lock()t_l=[]for i in range(10):t=Thread(target=task)t_l.append(t)t.start()for t in t_l:t.join()print(n)

输出如下:

90

如上是意思就是启动10个子线程,然后为10个子线程分别加线程互斥锁,操作变量n,然后在各个子线程执行完毕,在输出n的值为90,说明改变了共享变量n

由于多个线程公用一块内存,可以实现资源共享

1.10个线程去抢GIL锁,即抢执行权限
2. 肯定有一个线程先抢到GIL(暂且称为线程1),然后开始执行,一旦执行就会拿到lock.acquire()
3. 极有可能线程1还未运行完毕,就有另外一个线程2抢到GIL,然后开始运行,但线程2发现互斥锁lock还未被线程1释放,于是阻塞,被迫交出执行权限,即释放GIL
4.直到线程1重新抢到GIL,开始从上次暂停的位置继续执行,直到正常释放互斥锁lock,然后其他的线程再重复2 3 4的过程

进程锁数据非共享

from multiprocessing import Process,Lock
import time
n=100def task(mutex):global nmutex.acquire()temp=ntime.sleep(0.1)n=temp-1mutex.release()if __name__ == '__main__':mutex=Lock()t_l=[]for i in range(10):t=Process(target=task,args=(mutex,))t_l.append(t)t.start()for t in t_l:t.join()print(n)

输出:

100

由于是启动了10 个进程,那么就开辟了10快内存空间,每个进程会在自己内存空间操作变量n,但是最后print(n)是输出的主进程的n值,所以子进程没有操作修改主进程的n值,所以输出100

进程锁数据共享

那么我们如何通过进程修改呢?
进程间数据是独立的,可以借助于队列或管道实现通信,二者都是基于消息传递的
我们篇幅博客在了解学习

虽然进程间数据独立,但可以通过Manager实现数据共享,事实上Manager的功能远不止于此
Manager支持的类型有list,dict,Namespace,Lock,RLock,Semaphore,BoundedSemaphore,Condition,Event,Queue,Value和Array。

from multiprocessing import Manager,Process,Lock
import os
def work(d,lock):with lock: #不加锁而操作共享的数据,肯定会出现数据错乱d['count']-=1if __name__ == '__main__':lock=Lock()with Manager() as m:dic=m.dict({'count':10})p_l=[]for i in range(10):p=Process(target=work,args=(dic,lock))p_l.append(p)p.start()for p in p_l:p.join()print(dic)

输出如下:

{'count': 0}

这篇关于python基础-Manager进程数据共享、进程互斥锁数据非共享、线程互斥锁数据共享的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1125196

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]