python基础-Manager进程数据共享、进程互斥锁数据非共享、线程互斥锁数据共享

本文主要是介绍python基础-Manager进程数据共享、进程互斥锁数据非共享、线程互斥锁数据共享,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

      • 线程数据共享无io
      • 线程数据共享有io
      • 线程锁数据共享
      • 进程锁数据非共享
      • 进程锁数据共享

1.线程抢的是GIL锁,GIL锁相当于执行权限,拿到执行权限后才能拿到互斥锁Lock,其他线程也可以抢到GIL,但如果发现Lock仍然没有被释放则阻塞,即便是拿到执行权限GIL也要立刻交出来

2.join是等待所有,即整体串行,而锁只是锁住修改共享数据的部分,即部分串行,要想保证数据安全的根本原理在于让并发变成串行,join与互斥锁都可以实现,毫无疑问,互斥锁的部分串行效率要更高

机智的同学可能会问到这个问题,就是既然你之前说过了,Python已经有一个GIL来保证同一时间只能有一个线程来执行了,为什么这里还需要lock? 

 首先我们需要达成共识:锁的目的是为了保护共享的数据,同一时间只能有一个线程来修改共享的数据

然后,我们可以得出结论:保护不同的数据就应该加不同的锁。

 最后,问题就很明朗了,GIL 与Lock是两把锁,保护的数据不一样,前者是解释器级别的(当然保护的就是解释器级别的数据,比如垃圾回收的数据),后者是保护用户自己开发的应用程序的数据,很明显GIL不负责这件事,只能用户自定义加锁处理,即Lock

过程分析:所有线程抢的是GIL锁,或者说所有线程抢的是执行权限

  线程1抢到GIL锁,拿到执行权限,开始执行,然后加了一把Lock,还没有执行完毕,即线程1还未释放Lock,有可能线程2抢到GIL锁,开始执行,执行过程中发现Lock还没有被线程1释放,于是线程2进入阻塞,被夺走执行权限,有可能线程1拿到GIL,然后正常执行到释放Lock。。。这就导致了串行运行的效果

  既然是串行,那我们执行

  t1.start()

  t1.join

  t2.start()

  t2.join()

  这也是串行执行啊,为何还要加Lock呢,需知join是等待t1所有的代码执行完,相当于锁住了t1的所有代码,而Lock只是锁住一部分操作共享数据的代码。

线程数据共享(无io)

from threading import Thread,Lock
import time
n=100def task():global ntemp=nn=temp-1if __name__ == '__main__':mutex=Lock()t_l=[]for i in range(10):t=Thread(target=task)t_l.append(t)t.start()for t in t_l:t.join()print(n)

输出结果:

90

在没有枷锁的情况下,是效率最高的,直接共同修改数据结果为90,但是有个情况,就是会使数据错乱,我们来看下线程锁的情况

线程数据共享(有io)

我们在上面的代码加入time.sleep(0.5)这行看看输出结果是什么?


from threading import Thread,Lock
import time
n=100def task():global ntemp=ntime.sleep(0.5)n=temp-1if __name__ == '__main__':mutex=Lock()t_l=[]for i in range(10):t=Thread(target=task)t_l.append(t)t.start()for t in t_l:t.join()print(n)

输出

99

在time.sleep(0.5)之前,各个线程已经拿到n=100值了,然后sleep之后,就没又获取新的temp值,然后利用n=temp-1,拿到n值99

线程锁数据共享

我们把上篇博客线程锁代码拿过来

from threading import Thread,Lock
import time
n=100def task():global nmutex.acquire()temp=ntime.sleep(0.1)n=temp-1mutex.release()if __name__ == '__main__':mutex=Lock()t_l=[]for i in range(10):t=Thread(target=task)t_l.append(t)t.start()for t in t_l:t.join()print(n)

输出如下:

90

如上是意思就是启动10个子线程,然后为10个子线程分别加线程互斥锁,操作变量n,然后在各个子线程执行完毕,在输出n的值为90,说明改变了共享变量n

由于多个线程公用一块内存,可以实现资源共享

1.10个线程去抢GIL锁,即抢执行权限
2. 肯定有一个线程先抢到GIL(暂且称为线程1),然后开始执行,一旦执行就会拿到lock.acquire()
3. 极有可能线程1还未运行完毕,就有另外一个线程2抢到GIL,然后开始运行,但线程2发现互斥锁lock还未被线程1释放,于是阻塞,被迫交出执行权限,即释放GIL
4.直到线程1重新抢到GIL,开始从上次暂停的位置继续执行,直到正常释放互斥锁lock,然后其他的线程再重复2 3 4的过程

进程锁数据非共享

from multiprocessing import Process,Lock
import time
n=100def task(mutex):global nmutex.acquire()temp=ntime.sleep(0.1)n=temp-1mutex.release()if __name__ == '__main__':mutex=Lock()t_l=[]for i in range(10):t=Process(target=task,args=(mutex,))t_l.append(t)t.start()for t in t_l:t.join()print(n)

输出:

100

由于是启动了10 个进程,那么就开辟了10快内存空间,每个进程会在自己内存空间操作变量n,但是最后print(n)是输出的主进程的n值,所以子进程没有操作修改主进程的n值,所以输出100

进程锁数据共享

那么我们如何通过进程修改呢?
进程间数据是独立的,可以借助于队列或管道实现通信,二者都是基于消息传递的
我们篇幅博客在了解学习

虽然进程间数据独立,但可以通过Manager实现数据共享,事实上Manager的功能远不止于此
Manager支持的类型有list,dict,Namespace,Lock,RLock,Semaphore,BoundedSemaphore,Condition,Event,Queue,Value和Array。

from multiprocessing import Manager,Process,Lock
import os
def work(d,lock):with lock: #不加锁而操作共享的数据,肯定会出现数据错乱d['count']-=1if __name__ == '__main__':lock=Lock()with Manager() as m:dic=m.dict({'count':10})p_l=[]for i in range(10):p=Process(target=work,args=(dic,lock))p_l.append(p)p.start()for p in p_l:p.join()print(dic)

输出如下:

{'count': 0}

这篇关于python基础-Manager进程数据共享、进程互斥锁数据非共享、线程互斥锁数据共享的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1125196

相关文章

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

JAVA保证HashMap线程安全的几种方式

《JAVA保证HashMap线程安全的几种方式》HashMap是线程不安全的,这意味着如果多个线程并发地访问和修改同一个HashMap实例,可能会导致数据不一致和其他线程安全问题,本文主要介绍了JAV... 目录1. 使用 Collections.synchronizedMap2. 使用 Concurren

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py