langchain结合searXNG实现基于搜索RAG

2024-08-31 20:44

本文主要是介绍langchain结合searXNG实现基于搜索RAG,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、背景

二、环境说明和安装

1.1 环境说明

2.2 环境安装

2.2.1 searXNG安装

代码实现

代码

结果输出

直接请求模型输出

​编辑

参考


一、背景

        大语言模型的出现带来了新的技术革新,但是大模型由于训练语料的原因,它的知识和当前实时热点存在时间差距,存在很严重的幻觉。而RAG检索增强生成能够解决这个问题,知识以prompt的形式进行补足,再让LLM进行润色进而呈现给用户。

二、环境说明和安装

1.1 环境说明

        整个环境都是基于我本地进行搭建,机器环境采用的是wsl2部署的Ubuntu-20.04,大模型选取的是Qwen/Qwen2-7B-Instruct,采用vllm进行部署推理以openai api的形式提供服务,langchain使用的是最新的0.2版本,由于searXNG是需要docker部署的,所以请确保已安装docker .desktop。

2.2 环境安装

2.2.1 searXNG安装
  • 下载
cd /opt/softwares
git clone https://github.com/searxng/searxng-docker.git
cd searxng-docker
  • docker-compose配置

searXNG的组件有三个,caddy实现反向代理,这里不需要反向代理,采用直接调用的形式,关于caddy的部分注释掉;redis用来保存session,searXNG提供搜索服务。设置端口映射,0.0.0.0:8080:8080左边的端口为宿主机端口,右边的端口为docker端口

version: "3.7"services:#caddy:#container_name: caddy#image: docker.io/library/caddy:2-alpine#network_mode: host#restart: unless-stopped#volumes:#- ./Caddyfile:/etc/caddy/Caddyfile:ro#- caddy-data:/data:rw#- caddy-config:/config:rw#environment:#- SEARXNG_HOSTNAME=${SEARXNG_HOSTNAME:-http://localhost:80}#- SEARXNG_TLS=${LETSENCRYPT_EMAIL:-internal}#cap_drop:#- ALL#cap_add:#- NET_BIND_SERVICE#logging:#driver: "json-file"#options:#max-size: "1m"#max-file: "1"redis:container_name: redisimage: docker.io/valkey/valkey:7-alpinecommand: valkey-server --save 30 1 --loglevel warningrestart: unless-stoppednetworks:- searxngvolumes:- valkey-data2:/datacap_drop:- ALLcap_add:- SETGID- SETUID- DAC_OVERRIDElogging:driver: "json-file"options:max-size: "1m"max-file: "1"searxng:container_name: searxngimage: docker.io/searxng/searxng:latestrestart: unless-stoppednetworks:- searxngports:- "0.0.0.0:8080:8080"volumes:- ./searxng:/etc/searxng:rwenvironment:- SEARXNG_BASE_URL=https://${SEARXNG_HOSTNAME:-localhost}/cap_drop:- ALLcap_add:- CHOWN- SETGID- SETUIDlogging:driver: "json-file"options:max-size: "1m"max-file: "1"networks:searxng:volumes:caddy-data:caddy-config:valkey-data2:
  • searxng配置
# 设置秘钥
sed -i "s|ultrasecretkey|$(openssl rand -hex 32)|g" searxng/settings.yml
# limiter设置为false,设置formats
vim searxng/settings.yml

settings.yml内容如下:

use_default_settings: true
server:# base_url is defined in the SEARXNG_BASE_URL environment variable, see .env and docker-compose.ymlsecret_key: "fc6a61736b885ace5f990f840006d057c01604501a36636b4a378f4b2cb89fdf"  # change this!limiter: false  # can be disabled for a private instanceimage_proxy: true
ui:static_use_hash: true
redis:url: redis://redis:6379/0
search:formats:- html- json

如果没有配置search.formats,在使用langchain进行调用的时候会报503错误,相关issue如下:

https://github.com/langchain-ai/langchain/issues/855

  • 启动
# 启动
docker-compose up -d
# 停止
docker-compose stop
  • 访问localhost:8080,如下:

代码实现

代码

from typing import List
from langchain_community.utilities import SearxSearchWrapper
import requests
from requests.exceptions import RequestException
from langchain_community.document_loaders import AsyncHtmlLoader
from langchain_community.document_transformers.html2text import Html2TextTransformer
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_openai.chat_models import ChatOpenAI
from langchain.prompts.chat import ChatPromptTemplate
import faiss
from langchain_community.vectorstores import FAISS
from langchain_community.docstore import InMemoryDocstore
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_core.documents import Document
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains.retrieval import create_retrieval_chain
import os
import sys
sys.path.append(os.path.abspath(os.pardir))
from global_config import MODEL_CACHE_DIR
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"def check_url_access(urls: List[str]) -> List[str]:urls_can_access = []for url in urls:try:req_res = requests.get(url)if req_res is not None and req_res.ok:urls_can_access.append(url)except RequestException as e:continuereturn urls_can_accessdef get_chat_llm(streaming=False, temperature=0, max_tokens=2048) -> ChatOpenAI:chat_llm = ChatOpenAI(model_name="Qwen2-7B-Instruct",openai_api_key="empty",openai_api_base="http://localhost:8000/v1",max_tokens=max_tokens,temperature=temperature,streaming=streaming)return chat_llmdef get_retriever(documents: List[Document]):# embeddingembeddings = HuggingFaceEmbeddings(model_name=os.path.join(MODEL_CACHE_DIR, "maidalun/bce-embedding-base_v1"))# faissfaiss_index = faiss.IndexFlatL2(len(embeddings.embed_query("hello world")))  # 指定向量维度vector_store = FAISS(embedding_function=embeddings,index=faiss_index,docstore=InMemoryDocstore(),index_to_docstore_id={})vector_store.add_documents(documents)return vector_store.as_retriever()def get_answer_prompt() -> ChatPromptTemplate:system_prompt = """你是一个问答任务的助手,请依据以下检索出来的信息去回答问题:{context}"""return ChatPromptTemplate([("system", system_prompt),("human", "{input}")])if __name__ == '__main__':llm = get_chat_llm()search = SearxSearchWrapper(searx_host="http://localhost:8080/")query = "《元梦之星》这款游戏是什么时候发行的"results = search.results(query,                                  # 搜索内容language="zh-CN",                       # 语言safesearch=1,                           # 可选0(不过滤任何结果),1(中等级别内容过滤),2(严格级别内容过滤)categories="general",                   # 搜索内容,取值general/images/videos等engines=["bing", "brave", "google"],    # 搜索引擎num_results=3                           # 返回内容数)print(f"search results: {results}")urls_to_look = [ele["link"] for ele in results if ele.get("link", None)]# 检查url是否可达urls = check_url_access(urls_to_look)print(f"urls: {urls}")# loaderloader = AsyncHtmlLoader(urls, ignore_load_errors=True, requests_kwargs={"timeout": 5})docs = loader.load()# transformerhtml2text = Html2TextTransformer()docs = html2text.transform_documents(docs)# text splittext_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)docs = text_splitter.split_documents(docs)# retrieverretriever = get_retriever(docs)# create_stuff_documents_chain的prompt必须含有context变量qa_chain = create_stuff_documents_chain(llm, get_answer_prompt())rag_chain = create_retrieval_chain(retriever, qa_chain)res = rag_chain.invoke({"input": query})print(res["answer"])

结果输出

《元梦之星》这款游戏是在2023年12月15日全平台上线发行的。

直接请求模型输出

curl http://localhost:8000/v1/chat/completions \-H "Content-Type: application/json" \-d '{"model": "Qwen2-7B-Instruct","messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "《元梦之星》这款游戏是什么时候发行的"}]}'

从基于搜索的RAG输出和模型原始输出来看,搜索能补充大模型缺失的知识,从而基于新知识来进行回答

参考

https://github.com/searxng/searxng-docker

https://github.com/ptonlix/LangChain-SearXNG

SearxNG Search | 🦜️🔗 LangChain

Conversational RAG | 🦜️🔗 LangChain

maidalun1020/bce-embedding-base_v1 · Hugging Face

这篇关于langchain结合searXNG实现基于搜索RAG的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124943

相关文章

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组