GraphRAG 文本分割优化

2024-08-31 20:36
文章标签 优化 分割 文本 graphrag

本文主要是介绍GraphRAG 文本分割优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GraphRAG 文本分割优化

开始调整对微软的 GraphRAG 进行优化,这次优化有以下几点,

  • ‘�’ 乱码问题
  • 句子在中间被截断的问题
# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License"""A module containing run and split_text_on_tokens methods definition."""from collections.abc import Iterable
from typing import Anyimport tiktoken
from datashaper import ProgressTickerimport graphrag.config.defaults as defs
from graphrag.index.text_splitting import Tokenizer
from graphrag.index.verbs.text.chunk.typing import TextChunkdef trim_sentence(sentence):# 定义固定的分隔符列表delimiters = [',', '、', '。', '!', '?', ';', ':', '.']# 查找第一个非分隔符的字符位置start_index = 0for i, char in enumerate(sentence):if char in delimiters:start_index = i + 1break# 查找最后一个非分隔符的字符位置end_index = len(sentence)for i in range(len(sentence) - 1, -1, -1):if sentence[i] in delimiters:end_index = i + 1break# 返回修剪后的句子return sentence[start_index:end_index]def run(input: list[str], args: dict[str, Any], tick: ProgressTicker
) -> Iterable[TextChunk]:"""Chunks text into multiple parts. A pipeline verb."""tokens_per_chunk = args.get("chunk_size", defs.CHUNK_SIZE)chunk_overlap = args.get("chunk_overlap", defs.CHUNK_OVERLAP)encoding_name = args.get("encoding_name", defs.ENCODING_MODEL)enc = tiktoken.get_encoding(encoding_name)def encode(text: str) -> list[int]:if not isinstance(text, str):text = f"{text}"return enc.encode(text)def decode(tokens: list[int]) -> str:return enc.decode(tokens)return split_text_on_tokens(input,Tokenizer(chunk_overlap=chunk_overlap,tokens_per_chunk=tokens_per_chunk,encode=encode,decode=decode,),tick,)# Adapted from - https://github.com/langchain-ai/langchain/blob/77b359edf5df0d37ef0d539f678cf64f5557cb54/libs/langchain/langchain/text_splitter.py#L471
# So we could have better control over the chunking process
def split_text_on_tokens(texts: list[str], enc: Tokenizer, tick: ProgressTicker
) -> list[TextChunk]:"""Split incoming text and return chunks."""result = []mapped_ids = []for source_doc_idx, text in enumerate(texts):encoded = enc.encode(text)# print(f"{text=} {encoded=}")# encoded = tiktoken.get_encoding("utf8").encode(text)tick(1)mapped_ids.append((source_doc_idx, encoded))input_ids: list[tuple[int, int]] = [(source_doc_idx, id) for source_doc_idx, ids in mapped_ids for id in ids]start_idx = 0cur_idx = min(start_idx + enc.tokens_per_chunk, len(input_ids))chunk_ids = input_ids[start_idx:cur_idx]while start_idx < len(input_ids):chunk_text = enc.decode([id for _, id in chunk_ids])chunk_text = chunk_text.strip("�")chunk_text = trim_sentence(chunk_text)enc.encode(chunk_text)doc_indices = list({doc_idx for doc_idx, _ in chunk_ids})result.append(TextChunk(text_chunk=chunk_text,source_doc_indices=doc_indices,# n_tokens=len(chunk_ids),n_tokens=len(enc.encode(chunk_text)),))start_idx += enc.tokens_per_chunk - enc.chunk_overlapcur_idx = min(start_idx + enc.tokens_per_chunk, len(input_ids))chunk_ids = input_ids[start_idx:cur_idx]return result

这篇关于GraphRAG 文本分割优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124928

相关文章

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

苹果macOS 26 Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色

《苹果macOS26Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色》在整体系统设计方面,macOS26采用了全新的玻璃质感视觉风格,应用于Dock栏、应用图标以及桌面小部件等多个界面... 科技媒体 MACRumors 昨日(6 月 13 日)发布博文,报道称在 macOS 26 Tahoe 中

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)