DFS、BFS、Union-Find:找出图中省份数量的最佳方法

2024-08-31 17:12

本文主要是介绍DFS、BFS、Union-Find:找出图中省份数量的最佳方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目理解

问题描述:

  • n 个城市,其中一些城市之间直接相连,另一些则不相连。
  • 如果城市 a 和城市 b 直接相连,且城市 b 和城市 c 直接相连,那么城市 a 和城市 c 间接相连。
  • 省份被定义为一组直接或间接相连的城市,组内不包含与之不相连的其他城市。
  • 给定一个 n x n 的矩阵 isConnected,其中 isConnected[i][j] = 1 表示第 i 个城市和第 j 个城市直接相连,isConnected[i][j] = 0 表示不直接相连。
  • 需要返回矩阵中省份的数量。

示例解释:

  • 示例 1:

    输入:isConnected = [[1,1,0],[1,1,0],[0,0,1]]
    输出:2
    

    解释:城市1和城市2直接相连,城市3独自一省。

  • 示例 2:

    输入:isConnected = [[1,0,0],[0,1,0],[0,0,1]]
    输出:3
    

    解释:每个城市都独自一省。

547. 省份数量 - 力扣(LeetCode)

解决思路

这个问题实际上是在求图中的连通分量数量。每个省份对应于图中的一个连通分量。我们可以将城市看作图中的节点,直接相连表示节点之间有边。

有几种常见的方法可以求解连通分量:

  1. 深度优先搜索(DFS)
  2. 广度优先搜索(BFS)
  3. 并查集(Union-Find)

我们将详细介绍这三种方法,并探讨它们的优缺点和实际应用场景。

方法一:深度优先搜索(DFS)

思路:

  • 遍历每个城市,如果该城市未被访问过,则开始一次DFS遍历,标记所有与之连通的城市为已访问。
  • 每进行一次DFS遍历,省份数量加一。

步骤:

  1. 初始化一个访问数组 visited,大小为 n,全部设为 false
  2. 初始化省份计数器 count0
  3. 遍历每个城市 i
    • 如果 visited[i]false,则:
      • 进行一次DFS,从城市 i 开始,标记所有连通的城市为已访问。
      • 省份计数器 count 增加 1
  4. 返回 count 作为省份的数量。

实现代码:

#include <vector>using namespace std;class Solution {
public:void dfs(int i, vector<vector<int>>& isConnected, vector<bool>& visited) {visited[i] = true;for(int j = 0; j < isConnected.size(); j++) {if(isConnected[i][j] == 1 && !visited[j]) {dfs(j, isConnected, visited);}}}int findCircleNum(vector<vector<int>>& isConnected) {int n = isConnected.size();vector<bool> visited(n, false);int count = 0;for(int i = 0; i < n; i++) {if(!visited[i]) {dfs(i, isConnected, visited);count++;}}return count;}
};

代码解释:

  • dfs 函数用于深度优先搜索,标记所有与当前城市 i 直接或间接相连的城市。
  • findCircleNum 函数中,遍历每个城市,如果未被访问,则调用 dfs 并增加省份计数。

优点:

  • 易于理解和实现:DFS方法非常直观,尤其是对那些习惯递归思维的程序员来说。通过简单的递归调用就可以完成连通分量的遍历和计数。
  • 适合稀疏图:对于大部分节点之间没有直接连接的图,DFS的性能表现良好。

缺点:

  • 递归深度限制:在处理特别大的图时,递归深度可能会导致栈溢出,进而程序崩溃。在这种情况下,需要转换为迭代实现,或者增加栈的大小。

实际应用场景:

  • 图的连通分量:DFS可以广泛应用于需要识别图中连通分量的问题中,比如社交网络中的群体识别、地图中区域的划分等。

示例讲解:

以示例1为例:

isConnected = [[1,1,0],[1,1,0],[0,0,1]]
  • 初始化 visited = [false, false, false]count = 0
  • 遍历城市0:
    • visited[0]false,调用 dfs(0)
      • 标记 visited[0] = true
      • 检查城市0的连接:
        • 城市0与城市1相连,且 visited[1] = false,调用 dfs(1)
          • 标记 visited[1] = true
          • 检查城市1的连接:
            • 城市1与城市0相连,但 visited[0] = true
            • 城市1与城市1相连,但自身已访问。
        • 城市0与城市2不相连。
      • dfs(0) 完成,count = 1
  • 遍历城市1:
    • visited[1] = true,跳过。
  • 遍历城市2:
    • visited[2] = false,调用 dfs(2)
      • 标记 visited[2] = true
      • 检查城市2的连接:
        • 城市2与城市2相连,但自身已访问。
      • dfs(2) 完成,count = 2
  • 最终返回 2

方法二:广度优先搜索(BFS)

思路:

与DFS类似,BFS也是用于遍历图中所有连通的节点。不同之处在于,DFS使用栈(递归实现),而BFS使用队列。这使得BFS能够层层推进,逐步扩展搜索范围,从起点节点开始,首先访问其所有邻接节点,然后再访问这些邻接节点的邻接节点,依此类推。

步骤:

  1. 初始化一个访问数组 visited,大小为 n,全部设为 false
  2. 初始化省份计数器 count0
  3. 遍历每个城市 i
    • 如果 visited[i]false,则:
      • 进行一次BFS,从城市 i 开始,标记所有连通的城市为已访问。
      • 省份计数器 count 增加 1
  4. 返回 count 作为省份的数量。

实现代码:

#include <vector>
#include <queue>using namespace std;class Solution {
public:int findCircleNum(vector<vector<int>>& isConnected) {int n = isConnected.size();vector<bool> visited(n, false);int count = 0;queue<int> q;for(int i = 0; i < n; i++) {if(!visited[i]) {q.push(i);while(!q.empty()) {int current = q.front();q.pop();if(!visited[current]) {visited[current] = true;for(int j = 0; j < n; j++) {if(isConnected[current][j] == 1 && !visited[j]) {q.push(j);}}}}count++;}}return count;}
};

代码解释:

  • 使用队列 q 来实现BFS。
  • 对于每个未访问的城市,加入队列,并依次访问其所有直接相连的城市,标记为已访问。

优点:

  • 避免栈溢出:与DFS相比,BFS的迭代实现避免了深度递归可能带来的栈溢出问题,因此在处理大型图时更加稳定。
  • 按层次遍历:BFS按层次遍历所有节点,能够保证先访问的节点离起点最近,这在某些特定问题中非常有用,比如求最短路径等。

缺点:

  • 空间复杂度较高:BFS需要维护一个队列,因此在空间上比

DFS略显不足,特别是在图的节点较多且连通性较高时,队列的最大长度会增大,导致内存占用增加。

实际应用场景:

  • 图的广度优先遍历:BFS广泛应用于各种图遍历任务中,尤其是那些要求按距离优先访问节点的任务,如最短路径问题、层次遍历等。

示例讲解:

以示例1为例:

isConnected = [[1,1,0],[1,1,0],[0,0,1]]
  • 初始化 visited = [false, false, false]count = 0
  • 遍历城市0:
    • visited[0]false,将城市0加入队列 q
    • BFS开始:
      • q 中有城市0,弹出 current = 0
      • 标记 visited[0] = true
      • 检查城市0的连接:
        • 城市0与城市1相连,将城市1加入队列 q
      • q 中有城市1,弹出 current = 1
      • 标记 visited[1] = true
      • 检查城市1的连接:
        • 城市1与城市0相连,但 visited[0] = true
      • BFS结束,count = 1
  • 遍历城市1:
    • visited[1] = true,跳过。
  • 遍历城市2:
    • visited[2] = false,将城市2加入队列 q
    • BFS开始:
      • q 中有城市2,弹出 current = 2
      • 标记 visited[2] = true
      • 检查城市2的连接:
        • 城市2与城市2相连,但自身已访问。
      • BFS结束,count = 2
  • 最终返回 2

方法三:并查集(Union-Find)

思路:

并查集是一种数据结构,常用于处理不相交集合的合并和查询问题。对于图中的连通分量问题,使用并查集可以高效地合并连通的节点,并在最后通过集合的数量来得出连通分量的数量。

步骤:

  1. 初始化一个并查集 parent 数组,每个城市的父节点指向自己。
  2. 遍历 isConnected 矩阵,对于每个直接相连的城市对 (i, j)
    • 如果 isConnected[i][j] == 1,则合并城市 i 和城市 j
  3. 遍历所有城市,统计根节点的数量,即为省份的数量。

实现代码:

#include <vector>using namespace std;class Solution {
public:int find(int x, vector<int>& parent) {if(parent[x] != x) {parent[x] = find(parent[x], parent); // 路径压缩}return parent[x];}void unionSets(int x, int y, vector<int>& parent) {int rootX = find(x, parent);int rootY = find(y, parent);if(rootX != rootY) {parent[rootX] = rootY; // 合并集合}}int findCircleNum(vector<vector<int>>& isConnected) {int n = isConnected.size();vector<int> parent(n);for(int i = 0; i < n; i++) {parent[i] = i; // 初始化每个城市的父节点为自己}for(int i = 0; i < n; i++) {for(int j = i + 1; j < n; j++) {if(isConnected[i][j] == 1) {unionSets(i, j, parent);}}}int count = 0;for(int i = 0; i < n; i++) {if(parent[i] == i) {count++;}}return count;}
};

代码解释:

  • find 函数用于查找某个城市的根节点,并通过路径压缩优化查找效率。
  • unionSets 函数用于合并两个城市所属的集合。
  • 最后遍历 parent 数组,统计根节点的数量即为省份数量。

优点:

  • 高效处理连通性问题:并查集非常适合处理动态连通性问题,在合并和查找操作上都能保持较高的效率,尤其适合处理大规模图。
  • 路径压缩和按秩合并:通过路径压缩和按秩合并优化,并查集在实际应用中非常高效,几乎达到了常数级别的性能。

缺点:

  • 实现复杂度较高:相较于DFS和BFS,并查集的实现较为复杂,理解并查集的操作对于初学者来说可能有一定的难度。

实际应用场景:

  • 动态连通性:并查集常用于解决动态连通性问题,例如网络中设备的连接性判断、社交网络中的群组划分等。

示例讲解:

以示例1为例:

isConnected = [[1,1,0],[1,1,0],[0,0,1]]
  • 初始化 parent = [0, 1, 2]
  • 遍历 isConnected 矩阵:
    • i = 0, j = 1isConnected[0][1] == 1,合并城市0和城市1:
      • find(0) 返回 0, find(1) 返回 1。
      • 合并, parent[0] = 1parent = [1, 1, 2]
    • i = 0, j = 2isConnected[0][2] == 0,跳过。
    • i = 1, j = 2isConnected[1][2] == 0,跳过。
  • 遍历 parent 数组,统计根节点的数量:
    • parent = [1, 1, 2],根节点为 12,省份数量为 2

各方法的比较与选择

  • DFS:适合稀疏图,代码简单易实现,但递归深度受限。
  • BFS:适合处理递归深度受限的问题,按层次遍历,空间复杂度略高。
  • 并查集:最优解法,适合大规模图,处理动态连通性问题高效,但实现复杂度较高。

在实际应用中,根据问题规模和图的稠密程度选择合适的方法。在省份问题中,如果图的规模较小且递归深度不是问题,DFS和BFS都是不错的选择;如果图的规模较大或需要频繁处理连通性问题,并查集则更为高效。

这篇关于DFS、BFS、Union-Find:找出图中省份数量的最佳方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124502

相关文章

hdu1254(嵌套bfs,两次bfs)

/*第一次做这种题感觉很有压力,思路还是有点混乱,总是wa,改了好多次才ac的思路:把箱子的移动当做第一层bfs,队列节点要用到当前箱子坐标(x,y),走的次数step,当前人的weizhi(man_x,man_y),要判断人能否将箱子推到某点时要嵌套第二层bfs(人的移动);代码如下:

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

hdu 2489 (dfs枚举 + prim)

题意: 对于一棵顶点和边都有权值的树,使用下面的等式来计算Ratio 给定一个n 个顶点的完全图及它所有顶点和边的权值,找到一个该图含有m 个顶点的子图,并且让这个子图的Ratio 值在所有m 个顶点的树中最小。 解析: 因为数据量不大,先用dfs枚举搭配出m个子节点,算出点和,然后套个prim算出边和,每次比较大小即可。 dfs没有写好,A的老泪纵横。 错在把index在d

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

poj 3050 dfs + set的妙用

题意: 给一个5x5的矩阵,求由多少个由连续6个元素组成的不一样的字符的个数。 解析: dfs + set去重搞定。 代码: #include <iostream>#include <cstdio>#include <set>#include <cstdlib>#include <algorithm>#include <cstring>#include <cm

poj 2195 bfs+有流量限制的最小费用流

题意: 给一张n * m(100 * 100)的图,图中” . " 代表空地, “ M ” 代表人, “ H ” 代表家。 现在,要你安排每个人从他所在的地方移动到家里,每移动一格的消耗是1,求最小的消耗。 人可以移动到家的那一格但是不进去。 解析: 先用bfs搞出每个M与每个H的距离。 然后就是网络流的建图过程了,先抽象出源点s和汇点t。 令源点与每个人相连,容量为1,费用为