基于Pytorch框架的深度学习HRnet网络人像语义分割系统源码

本文主要是介绍基于Pytorch框架的深度学习HRnet网络人像语义分割系统源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  第一步:准备数据

头发分割数据,总共有5711张图片,里面的像素值为0和1,所以看起来全部是黑的,不影响使用

第二步:搭建模型

计算机视觉领域有很多任务是位置敏感的,比如目标检测、语义分割、实例分割等等。为了这些任务位置信息更加精准,很容易想到的做法就是维持高分辨率的feature map,事实上HRNet之前几乎所有的网络都是这么做的,通过下采样得到强语义信息,然后再上采样恢复高分辨率恢复位置信息(如下图所示),然而这种做法,会导致大量的有效信息在不断的上下采样过程中丢失。而HRNet通过并行多个分辨率的分支,加上不断进行不同分支之间的信息交互,同时达到强语义信息和精准位置信息的目的。

recover high resolution

思路在当时来讲,不同分支的信息交互属于很老套的思路(如FPN等),我觉得最大的创新点还是能够从头到尾保持高分辨率,而不同分支的信息交互是为了补充通道数减少带来的信息损耗,这种网络架构设计对于位置敏感的任务会有奇效。

第三步:代码

1)损失函数为:交叉熵损失函数

2)网络代码:

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as Ffrom .backbone import BN_MOMENTUM, hrnet_classificationclass HRnet_Backbone(nn.Module):def __init__(self, backbone = 'hrnetv2_w18', pretrained = False):super(HRnet_Backbone, self).__init__()self.model    = hrnet_classification(backbone = backbone, pretrained = pretrained)del self.model.incre_modulesdel self.model.downsamp_modulesdel self.model.final_layerdel self.model.classifierdef forward(self, x):x = self.model.conv1(x)x = self.model.bn1(x)x = self.model.relu(x)x = self.model.conv2(x)x = self.model.bn2(x)x = self.model.relu(x)x = self.model.layer1(x)x_list = []for i in range(2):if self.model.transition1[i] is not None:x_list.append(self.model.transition1[i](x))else:x_list.append(x)y_list = self.model.stage2(x_list)x_list = []for i in range(3):if self.model.transition2[i] is not None:if i < 2:x_list.append(self.model.transition2[i](y_list[i]))else:x_list.append(self.model.transition2[i](y_list[-1]))else:x_list.append(y_list[i])y_list = self.model.stage3(x_list)x_list = []for i in range(4):if self.model.transition3[i] is not None:if i < 3:x_list.append(self.model.transition3[i](y_list[i]))else:x_list.append(self.model.transition3[i](y_list[-1]))else:x_list.append(y_list[i])y_list = self.model.stage4(x_list)return y_listclass HRnet(nn.Module):def __init__(self, num_classes = 21, backbone = 'hrnetv2_w18', pretrained = False):super(HRnet, self).__init__()self.backbone       = HRnet_Backbone(backbone = backbone, pretrained = pretrained)last_inp_channels   = np.int(np.sum(self.backbone.model.pre_stage_channels))self.last_layer = nn.Sequential(nn.Conv2d(in_channels=last_inp_channels, out_channels=last_inp_channels, kernel_size=1, stride=1, padding=0),nn.BatchNorm2d(last_inp_channels, momentum=BN_MOMENTUM),nn.ReLU(inplace=True),nn.Conv2d(in_channels=last_inp_channels, out_channels=num_classes, kernel_size=1, stride=1, padding=0))def forward(self, inputs):H, W = inputs.size(2), inputs.size(3)x = self.backbone(inputs)# Upsamplingx0_h, x0_w = x[0].size(2), x[0].size(3)x1 = F.interpolate(x[1], size=(x0_h, x0_w), mode='bilinear', align_corners=True)x2 = F.interpolate(x[2], size=(x0_h, x0_w), mode='bilinear', align_corners=True)x3 = F.interpolate(x[3], size=(x0_h, x0_w), mode='bilinear', align_corners=True)x = torch.cat([x[0], x1, x2, x3], 1)x = self.last_layer(x)x = F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True)return x

第四步:统计一些指标(训练过程中的loss和miou)

第五步:搭建GUI界面

第六步:整个工程的内容

有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码

代码见:基于Pytorch框架的深度学习HRnet网络人像语义分割系统源码

有问题可以私信或者留言,有问必答

这篇关于基于Pytorch框架的深度学习HRnet网络人像语义分割系统源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124401

相关文章

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

Python如何将大TXT文件分割成4KB小文件

《Python如何将大TXT文件分割成4KB小文件》处理大文本文件是程序员经常遇到的挑战,特别是当我们需要把一个几百MB甚至几个GB的TXT文件分割成小块时,下面我们来聊聊如何用Python自动完成这... 目录为什么需要分割TXT文件基础版:按行分割进阶版:精确控制文件大小完美解决方案:支持UTF-8编码

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

pytorch之torch.flatten()和torch.nn.Flatten()的用法

《pytorch之torch.flatten()和torch.nn.Flatten()的用法》:本文主要介绍pytorch之torch.flatten()和torch.nn.Flatten()的用... 目录torch.flatten()和torch.nn.Flatten()的用法下面举例说明总结torch

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子