Sharding-JDBC教程:Spring Boot整合Sharding-JDBC实现数据分表+读写分离

本文主要是介绍Sharding-JDBC教程:Spring Boot整合Sharding-JDBC实现数据分表+读写分离,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

读写分离
在上一篇文章介绍了如何使用Sharing-JDBC实现数据库的读写分离。读写分离的好处就是在并发量比较大的情况下,将查询数据库的压力
分担到多个从库中,能够满足高并发的要求。比如上一篇实现的那样,架构图如下:

数据分表
当数据量比较大的时候,比如单个表的数据量超过了500W的数据,这时可以考虑将数据存储在不同的表中。比如将user表拆分为四个表user_0、user_1、
user_2、user_3装在四个表中。此时如图所示:

案例详解
和上一篇文章使用的数据库是同一个数据库,数据库信息如下:

数据库类型    数据库    ip
主    cool    10.0.0.3
从    cool    10.0.0.13
从    cool    10.0.0.17
在主库初始化Mysql数据的脚本,初始化完后,从库也会创建这些表,脚本信息如下:

USE `cool`;

/*Table structure for table `user_0` */

DROP TABLE IF EXISTS `user_0`;

CREATE TABLE `user_0` (
  `id` int(12) NOT NULL AUTO_INCREMENT,
  `username` varchar(12) NOT NULL,
  `password` varchar(30) NOT NULL,
  PRIMARY KEY (`id`),
  KEY `idx-username` (`username`)
) ENGINE=InnoDB AUTO_INCREMENT=149 DEFAULT CHARSET=utf8;

/*Table structure for table `user_1` */

DROP TABLE IF EXISTS `user_1`;

CREATE TABLE `user_1` (
  `id` int(12) NOT NULL AUTO_INCREMENT,
  `username` varchar(12) NOT NULL,
  `password` varchar(30) NOT NULL,
  PRIMARY KEY (`id`),
  KEY `idx-username` (`username`)
) ENGINE=InnoDB AUTO_INCREMENT=150 DEFAULT CHARSET=utf8;

/*Table structure for table `user_2` */

DROP TABLE IF EXISTS `user_2`;

CREATE TABLE `user_2` (
  `id` int(12) NOT NULL AUTO_INCREMENT,
  `username` varchar(12) NOT NULL,
  `password` varchar(30) NOT NULL,
  PRIMARY KEY (`id`),
  KEY `idx-username` (`username`)
) ENGINE=InnoDB AUTO_INCREMENT=147 DEFAULT CHARSET=utf8;

/*Table structure for table `user_3` */

DROP TABLE IF EXISTS `user_3`;

CREATE TABLE `user_3` (
  `id` int(12) NOT NULL AUTO_INCREMENT,
  `username` varchar(12) NOT NULL,
  `password` varchar(30) NOT NULL,
  PRIMARY KEY (`id`),
  KEY `idx-username` (`username`)
) ENGINE=InnoDB AUTO_INCREMENT=148 DEFAULT CHARSET=utf8;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
本案例还是在上一篇文章的案例基础之上进行改造,工程的目录和pom的依赖见上一篇文章或者源码。在工程的配置
文件application.yml做Sharding-JDBC的配置,代码如下:


sharding:
  jdbc:
    dataSource:
      names: db-test0,db-test1,db-test2
      db-test0: #org.apache.tomcat.jdbc.pool.DataSource
        type: com.alibaba.druid.pool.DruidDataSource
        driverClassName: com.mysql.jdbc.Driver
        url: jdbc:mysql://10.0.0.3:3306/cool?useUnicode=true&characterEncoding=utf8&tinyInt1isBit=false&useSSL=false&serverTimezone=GMT
        username: root
        password: 
        maxPoolSize: 20
      db-test1:
        type: com.alibaba.druid.pool.DruidDataSource
        driverClassName: com.mysql.jdbc.Driver
        url: jdbc:mysql://10.0.0.13:3306/cool?useUnicode=true&characterEncoding=UTF-8&allowMultiQueries=true&useSSL=false&serverTimezone=GMT
        username: root
        password: 
        maxPoolSize: 20
      db-test2:
        type: com.alibaba.druid.pool.DruidDataSource
        driverClassName: com.mysql.jdbc.Driver
        url: jdbc:mysql://10.0.0.17:3306/cool?useUnicode=true&characterEncoding=UTF-8&allowMultiQueries=true&useSSL=false&serverTimezone=GMT
        username: root
        password: 
        maxPoolSize: 20
    props:
      sql:
        show: true
sharding.jdbc.config.sharding.tables.user.actual-data-nodes: ds_0.user_$->{0..3}
sharding.jdbc.config.sharding.tables.user.table-strategy.standard.sharding-column: id
sharding.jdbc.config.sharding.tables.user.table-strategy.standard.precise-algorithm-class-name: com.forezp.sharedingjdbcmasterslavetables.MyPreciseShardingAlgorithm

sharding.jdbc.config.sharding.master-slave-rules.ds_0.master-data-source-name: db-test0
sharding.jdbc.config.sharding.master-slave-rules.ds_0.slave-data-source-names: db-test1,db-test2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
在上面的配置中,sharding.jdbc.dataSource部分是配置的数据源的信息,本案例有三个数据源db-test0、db-test1、db-test2。

sharding.jdbc.config.sharding.master-slave-rules.ds_0.master-data-source-name配置的是主库的数据库名,本案例为db-test0,其中ds_0为分区名。

sharding.jdbc.config.sharding.master-slave-rules.ds_0.slave-data-source-names配置的是从库的数据库名,本案例为db-test1、db-test2。

sharding.jdbc.config.sharding.tables.user.actual-data-nodes配置的分表信息,真实的数据库信息。ds_0.user_$->{0…3},表示读取ds_0数据源的user_0、user_1、user_2、user_3。

sharding.jdbc.config.sharding.tables.user.table-strategy.standard.sharding-column配置的数据分表的字段,是根据id来分的。

sharding.jdbc.config.sharding.tables.user.table-strategy.standard.precise-algorithm-class-name是配置数据分表的策略的类,这里是自定义的类MyPreciseShardingAlgorithm。

MyPreciseShardingAlgorithm是根据id取模4来获取表名的,代码如下:

public class MyPreciseShardingAlgorithm implements PreciseShardingAlgorithm<Integer> {

    @Override
    public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Integer> shardingValue) {
        for (String tableName : availableTargetNames) {
            if (tableName.endsWith(shardingValue.getValue() % 4 + "")) {
                return tableName;
            }
        }
        throw new IllegalArgumentException();
    }

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
测试
写一个API来测试,代码如下:

@RestController
public class UserController {

    Logger logger= LoggerFactory.getLogger(UserController.class);

    @Autowired
    private UserService userService;

    @GetMapping("/users")
    public Object list() {
        return userService.list();
    }

    @GetMapping("/add")
    public Object add() {

        for(int i=100;i<150;i++) {
            User user = new User();
            user.setId(i);
            user.setUsername("forezp"+(i));
            user.setPassword("1233edwd");
           long resutl=   userService.addUser(user);
            logger.info("insert:"+user.toString()+" result:"+resutl);
        }
        return "ok";
    }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
启动Spring Boot工程,在浏览器上执行localhost:8080/add,然后去数据库中查询,可以看到user_0、user_1、user_2、user_3分别插入了数据。
然后访问localhost:8080/users,可以查询数据库中四个表中的所有数据。可见Sharding-JDBC在插入数据的时候,根据数据分表策略,将数据存储在
不同的表中,查询的时候将数据库从多个表中查询并聚合。

在数据库的主机的日志里面,可以看到查询的日志也验证了这个结论,如下:

2019-06-20T02:50:25.183174Z     2030 Query    select @@session.transaction_read_only
2019-06-20T02:50:25.193506Z     2030 Query    INSERT INTO user_2 (
          id, username, password
        )
        VALUES (
        134,
        'forezp134',
        '1233edwd'
        )

...省略
1
2
3
4
5
6
7
8
9
10
11
从库查询日志:

2019-06-20T02:41:28.450643Z     7367 Query    SELECT u.* FROM user_1 u
2019-06-20T02:41:28.450644Z     7366 Query    SELECT u.* FROM user_0 u
2019-06-20T02:41:28.461238Z     7367 Query    SELECT u.* FROM user_3 u
2019-06-20T02:41:28.462188Z     7366 Query    SELECT u.* FROM user_2 u

1
2
3
4
5
源码
https://github.com/forezp/SpringBootLearning/tree/master/sharding-jdbc-example/shareding-jdbc-master-slave-tables

参考资料
https://github.com/apache/incubator-shardingsphere-example/releases/tag/3.1.0.M1

https://shardingsphere.apache.org/document/current/cn/overview/

https://github.com/apache/incubator-shardingsphere

https://mp.weixin.qq.com/s/VlJ_3oN0Us2e_ZPk0sDT7w

 
扫码关注有惊喜

(转载本站文章请注明作者和出处 方志朋的博客)
--------------------- 
作者:方志朋 
来源:CSDN 
原文:https://blog.csdn.net/forezp/article/details/94174577 
版权声明:本文为博主原创文章,转载请附上博文链接!

这篇关于Sharding-JDBC教程:Spring Boot整合Sharding-JDBC实现数据分表+读写分离的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123491

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J