基于Python的机器学习系列(16):扩展 - AdaBoost

2024-08-31 06:20

本文主要是介绍基于Python的机器学习系列(16):扩展 - AdaBoost,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

        在本篇中,我们将扩展之前的AdaBoost算法实现,深入探索其细节并进行一些修改。我们将重点修复代码中的潜在问题,并对AdaBoost的实现进行一些调整,以提高其准确性和可用性。

1. 修复Alpha计算中的问题

        在AdaBoost中,如果分类器的错误率 e 为0,则计算出的权重 α 将是未定义的。为了解决这个问题,我们可以在计算过程中向分母中添加一个非常小的值,以避免除零错误。

2. 调整学习率

    sklearn的AdaBoost实现中包含一个learning_rate参数,这实际上是1/2​在α计算中的一部分。我们将这个参数重命名为eta,并尝试不同的eta值,以观察其对模型准确性的影响。sklearn的默认值为1。

3. 自定义决策桩

    sklearn中的DecisionTreeClassifier使用加权基尼指数来评估分裂,而我们学到的是加权错误率。我们将实现一个自定义的DecisionStump类,它使用加权错误率来替代基尼指数。为了验证自定义桩的有效性,我们将检查其是否能够与sklearn的实现提供相似的准确性。需要注意的是,如果不将标签 y 更改为-1,准确性可能会非常差。

代码示例

        以下是扩展AdaBoost实现的代码示例:

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.metrics import classification_report# 生成数据集
X, y = make_classification(n_samples=500, random_state=1)
y = np.where(y == 0, -1, 1)  # 将标签0转换为-1X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 自定义决策桩类
class DecisionStump():def __init__(self):self.polarity = 1self.feature_index = Noneself.threshold = Noneself.alpha = Nonedef fit(self, X, y, weights):m, n = X.shapemin_error = float('inf')for feature_index in range(n):feature_values = np.unique(X[:, feature_index])for threshold in feature_values:for polarity in [-1, 1]:predictions = np.ones(m)predictions[X[:, feature_index] < threshold] = -1predictions *= polarityerror = np.dot(weights, predictions != y)if error < min_error:min_error = errorself.polarity = polarityself.threshold = thresholdself.feature_index = feature_indexdef predict(self, X):predictions = np.ones(X.shape[0])if self.polarity == -1:predictions[X[:, self.feature_index] < self.threshold] = -1else:predictions[X[:, self.feature_index] >= self.threshold] = -1return predictions# 自定义AdaBoost类
class AdaBoost():def __init__(self, S=5, eta=0.5):self.S = Sself.eta = etadef fit(self, X, y):m, n = X.shapeW = np.full(m, 1/m)self.clfs = []for _ in range(self.S):clf = DecisionStump()clf.fit(X, y, W)predictions = clf.predict(X)error = np.dot(W, predictions != y)if error == 0:error = 1e-10  # 避免除零错误alpha = self.eta * 0.5 * np.log((1 - error) / error)clf.alpha = alphaW *= np.exp(alpha * (predictions != y))W /= np.sum(W)self.clfs.append(clf)def predict(self, X):clf_preds = np.zeros((X.shape[0], len(self.clfs)))for i, clf in enumerate(self.clfs):clf_preds[:, i] = clf.predict(X)return np.sign(np.dot(clf_preds, [clf.alpha for clf in self.clfs]))# 训练和评估自定义AdaBoost模型
ada_clf = AdaBoost(S=50, eta=0.5)
ada_clf.fit(X_train, y_train)
y_pred = ada_clf.predict(X_test)print("自定义AdaBoost模型的分类报告:")
print(classification_report(y_test, y_pred))

结语

        在本篇中,我们扩展了AdaBoost的实现,解决了计算中的潜在问题,并尝试了不同的学习率以优化模型性能。与决策树、Bagging和随机森林相比,AdaBoost通过加权组合多个弱分类器,能够进一步提高分类性能。决策树为基础分类器提供了简单有效的分裂方式,而AdaBoost则通过提升算法强化了模型的准确性。与Bagging和随机森林不同,AdaBoost侧重于通过关注分类错误的样本来提升弱分类器的性能,从而在许多复杂任务中表现出色。

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

这篇关于基于Python的机器学习系列(16):扩展 - AdaBoost的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123133

相关文章

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

Python中@classmethod和@staticmethod的区别

《Python中@classmethod和@staticmethod的区别》本文主要介绍了Python中@classmethod和@staticmethod的区别,文中通过示例代码介绍的非常详细,对大... 目录1.@classmethod2.@staticmethod3.例子1.@classmethod

Python手搓邮件发送客户端

《Python手搓邮件发送客户端》这篇文章主要为大家详细介绍了如何使用Python手搓邮件发送客户端,支持发送邮件,附件,定时发送以及个性化邮件正文,感兴趣的可以了解下... 目录1. 简介2.主要功能2.1.邮件发送功能2.2.个性签名功能2.3.定时发送功能2. 4.附件管理2.5.配置加载功能2.6.

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写