基于Python的机器学习系列(16):扩展 - AdaBoost

2024-08-31 06:20

本文主要是介绍基于Python的机器学习系列(16):扩展 - AdaBoost,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

        在本篇中,我们将扩展之前的AdaBoost算法实现,深入探索其细节并进行一些修改。我们将重点修复代码中的潜在问题,并对AdaBoost的实现进行一些调整,以提高其准确性和可用性。

1. 修复Alpha计算中的问题

        在AdaBoost中,如果分类器的错误率 e 为0,则计算出的权重 α 将是未定义的。为了解决这个问题,我们可以在计算过程中向分母中添加一个非常小的值,以避免除零错误。

2. 调整学习率

    sklearn的AdaBoost实现中包含一个learning_rate参数,这实际上是1/2​在α计算中的一部分。我们将这个参数重命名为eta,并尝试不同的eta值,以观察其对模型准确性的影响。sklearn的默认值为1。

3. 自定义决策桩

    sklearn中的DecisionTreeClassifier使用加权基尼指数来评估分裂,而我们学到的是加权错误率。我们将实现一个自定义的DecisionStump类,它使用加权错误率来替代基尼指数。为了验证自定义桩的有效性,我们将检查其是否能够与sklearn的实现提供相似的准确性。需要注意的是,如果不将标签 y 更改为-1,准确性可能会非常差。

代码示例

        以下是扩展AdaBoost实现的代码示例:

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.metrics import classification_report# 生成数据集
X, y = make_classification(n_samples=500, random_state=1)
y = np.where(y == 0, -1, 1)  # 将标签0转换为-1X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 自定义决策桩类
class DecisionStump():def __init__(self):self.polarity = 1self.feature_index = Noneself.threshold = Noneself.alpha = Nonedef fit(self, X, y, weights):m, n = X.shapemin_error = float('inf')for feature_index in range(n):feature_values = np.unique(X[:, feature_index])for threshold in feature_values:for polarity in [-1, 1]:predictions = np.ones(m)predictions[X[:, feature_index] < threshold] = -1predictions *= polarityerror = np.dot(weights, predictions != y)if error < min_error:min_error = errorself.polarity = polarityself.threshold = thresholdself.feature_index = feature_indexdef predict(self, X):predictions = np.ones(X.shape[0])if self.polarity == -1:predictions[X[:, self.feature_index] < self.threshold] = -1else:predictions[X[:, self.feature_index] >= self.threshold] = -1return predictions# 自定义AdaBoost类
class AdaBoost():def __init__(self, S=5, eta=0.5):self.S = Sself.eta = etadef fit(self, X, y):m, n = X.shapeW = np.full(m, 1/m)self.clfs = []for _ in range(self.S):clf = DecisionStump()clf.fit(X, y, W)predictions = clf.predict(X)error = np.dot(W, predictions != y)if error == 0:error = 1e-10  # 避免除零错误alpha = self.eta * 0.5 * np.log((1 - error) / error)clf.alpha = alphaW *= np.exp(alpha * (predictions != y))W /= np.sum(W)self.clfs.append(clf)def predict(self, X):clf_preds = np.zeros((X.shape[0], len(self.clfs)))for i, clf in enumerate(self.clfs):clf_preds[:, i] = clf.predict(X)return np.sign(np.dot(clf_preds, [clf.alpha for clf in self.clfs]))# 训练和评估自定义AdaBoost模型
ada_clf = AdaBoost(S=50, eta=0.5)
ada_clf.fit(X_train, y_train)
y_pred = ada_clf.predict(X_test)print("自定义AdaBoost模型的分类报告:")
print(classification_report(y_test, y_pred))

结语

        在本篇中,我们扩展了AdaBoost的实现,解决了计算中的潜在问题,并尝试了不同的学习率以优化模型性能。与决策树、Bagging和随机森林相比,AdaBoost通过加权组合多个弱分类器,能够进一步提高分类性能。决策树为基础分类器提供了简单有效的分裂方式,而AdaBoost则通过提升算法强化了模型的准确性。与Bagging和随机森林不同,AdaBoost侧重于通过关注分类错误的样本来提升弱分类器的性能,从而在许多复杂任务中表现出色。

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

这篇关于基于Python的机器学习系列(16):扩展 - AdaBoost的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123133

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py