大模型企业应用落地系列八》基于大模型的对话式推荐系统》用户交互层

2024-08-31 04:04

本文主要是介绍大模型企业应用落地系列八》基于大模型的对话式推荐系统》用户交互层,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】

文章目录

  • 大模型企业应用落地系列八
    • 基于大模型的对话式推荐系统》用户交互层
      • 项目实践深入探讨
      • 大模型推荐技术发展趋势探讨
  • 总结

大模型企业应用落地系列八

基于大模型的对话式推荐系统》用户交互层

上一篇文章详细讲解了对话管理层,本篇文章将详细介绍用户交互层。

6.用户交互层
用户交互层是对话式推荐系统与用户直接交互的部分,设计得当的用户交互层能够显著提升用户体验,使系统更加用户友好、直观且个性化。以下是用户交互层的六个关键方面,它们共同确保了用户与系统之间高效、自然和个性化的交流:
(1)聊天界面:聊天界面是用户与系统进行文字交流的主要平台。它应该设计得直观易用,允许用户轻松输入查询、表达偏好和接收推荐。聊天界面应支持富文本格式,如表情符号、链接和图片,以丰富对话体验。此外,界面应提供清晰的输入提示和上下文感知的建议,以指导用户更有效地与系统互动。
(2)语音识别与合成:语音识别与合成技术使用户能够通过语音与系统交互,这对于移动设备或在无法打字的情况下尤其有用。系统应具备高精度的语音识别能力,能够理解用户的口头指令和问题,同时,语音合成技术应能够生成自然流畅的语音响应,使系统听起来更加人性化。语音接口还应考虑到不同口音和语速,确保广泛的用户群体都能得到良好的体验。
(3)用户反馈收集:用户反馈收集机制是持续改进系统的关键。系统应设计有易于使用的反馈工具,如星级评价、拇指向上/向下按钮或开放式文本框,让用户能够快速表达对推荐的满意程度。反馈收集应实时进行,以便系统能够立即调整推荐策略,提高用户满意度。此外,系统应鼓励用户提供具体反馈,以深入了解用户偏好和改进空间。
(4)多平台适配:多平台适配意味着系统能够在各种设备和操作系统上运行,包括智能手机、平板电脑、桌面计算机和智能音箱。用户交互层应设计为响应式,能够根据设备屏幕大小和输入方式自动调整布局和交互模式。此外,系统应保持跨平台的一致性,确保无论用户在哪里使用,都能获得相同的高质量体验。
(5)多模态媒体展示:多模态媒体展示是指系统能够以多种格式呈现信息,如文本、图像、视频和音频。这不仅使推荐更加生动有趣,还能满足不同用户的学习偏好。例如,对于音乐推荐,系统可以显示专辑封面、播放歌曲片段并提供歌词。多模态展示还应考虑无障碍性,为视觉或听觉障碍用户提供适当的替代媒体。
(6)个性化设置:个性化设置允许用户根据自己的喜好和需求定制系统行为。这可能包括设置推荐频率、选择推荐类型、调整推荐的多样性或新颖性,以及设置隐私选项。系统应提供一个易于导航的设置菜单,让用户能够轻松调整这些参数,以获得最符合个人喜好的推荐体验。

项目实践深入探讨

这篇文章以及前面的文章详细讲解了对话式推荐系统的整体技术架构实现,接下来通过实际项目实践深入探讨其具体实现,敬请关注。

大模型推荐技术发展趋势探讨

推荐系统的下一代发展趋势大概率走向基于大模型的互动式的对话式推荐,互动形式包括文本、语音、图像、视频等多模态融合。

更多的技术交流和探讨也欢迎加我个人微信chenjinglei66。

总结

此文章有对应的配套新书教材和视频:

【配套新书教材】
《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】
新书特色:本书从自然语言处理基础开始,逐步深入各种NLP热点前沿技术,使用了Java和Python两门语言精心编排了大量代码实例,契合公司实际工作场景技能,侧重实战。
全书共分为19章,详细讲解中文分词、词性标注、命名实体识别、依存句法分析、语义角色标注、文本相似度算法、语义相似度计算、词频-逆文档频率(TF-IDF)、条件随机场、新词发现与短语提取、搜索引擎Solr Cloud和Elasticsearch、Word2vec词向量模型、文本分类、文本聚类、关键词提取和文本摘要、自然语言模型(Language Model)、分布式深度学习实战等内容,同时配套完整实战项目,例如对话机器人实战、搜索引擎项目实战、推荐算法系统实战。
本书理论联系实践,深入浅出,知识点全面,通过阅读本书,读者不仅可以理解自然语言处理的知识,还能通过实战项目案例更好地将理论融入实际工作中。
《分布式机器学习实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】
新书特色:深入浅出,逐步讲解分布式机器学习的框架及应用配套个性化推荐算法系统、人脸识别、对话机器人等实战项目。

【配套视频】

推荐系统/智能问答/人脸识别实战 视频教程【陈敬雷】
视频特色:把目前互联网热门、前沿的项目实战汇聚一堂,通过真实的项目实战课程,让你快速成为算法总监、架构师、技术负责人!包含了推荐系统、智能问答、人脸识别等前沿的精品课程,下面分别介绍各个实战项目:
1、推荐算法系统实战
听完此课,可以实现一个完整的推荐系统!下面我们就从推荐系统的整体架构以及各个子系统的实现给大家深度解密来自一线大型互联网公司重量级的实战产品项目!
2、智能问答/对话机器人实战
由浅入深的给大家详细讲解对话机器人项目的原理以及代码实现、并在公司服务器上演示如何实际操作和部署的全过程!
3、人脸识别实战
从人脸识别原理、人脸识别应用场景、人脸检测与对齐、人脸识别比对、人脸年龄识别、人脸性别识别几个方向,从理论到源码实战、再到服务器操作给大家深度讲解!

自然语言处理NLP原理与实战 视频教程【陈敬雷】
视频特色:《自然语言处理NLP原理与实战》包含了互联网公司前沿的热门算法的核心原理,以及源码级别的应用操作实战,直接讲解自然语言处理的核心精髓部分,自然语言处理从业者或者转行自然语言处理者必听视频!

人工智能《分布式机器学习实战》 视频教程【陈敬雷】
视频特色:视频核心内容有互联网公司大数据和人工智能、大数据算法系统架构、大数据基础、Python编程、Java编程、Scala编程、Docker容器、Mahout分布式机器学习平台、Spark分布式机器学习平台、分布式深度学习框架和神经网络算法、自然语言处理算法、工业级完整系统实战(推荐算法系统实战、人脸识别实战、对话机器人实战)。

上一篇:大模型企业应用落地》基于大模型的对话式推荐系统完整介绍
下一篇:大模型企业应用落地系列九》基于大模型的对话式推荐系统》项目实践

这篇关于大模型企业应用落地系列八》基于大模型的对话式推荐系统》用户交互层的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122829

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了