MySQL count(*),count(1),count(field)区别、性能差异及优化建议

2024-08-31 01:58

本文主要是介绍MySQL count(*),count(1),count(field)区别、性能差异及优化建议,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

count函数是用来获取表中满足一定条件的记录数,常见用法有三种,count(*),count(1),count(field),这三种有什么区别?在性能上有何差异?本文将通过测试案例详细介绍和分析。

原文地址:
mytecdb.com/blogDetail.php?id=81

三者有何区别:

  • count(field)不包含字段值为NULL的记录。
  • count(*)包含NULL记录。
  • select(*)与select(1) 在InnoDB中性能没有任何区别,处理方式相同。官方文档描述如下:
    InnoDB handles SELECT COUNT(*) and SELECT COUNT(1) operations in the same way. There is no performance difference.
1. 性能对比

通过案例来测试一下count(*),count(1),count(field)的性能差异,MySQL版本为5.7.19,测试表是一张sysbench生成的表,表名sbtest1,总记录数2411645,如下:

CREATE TABLE sbtest1 (
id int(11) NOT NULL AUTO_INCREMENT,
k int(11) DEFAULT NULL,
c char(120) NOT NULL DEFAULT '',
pad char(60) NOT NULL DEFAULT '',
PRIMARY KEY (id),
KEY k_1 (k)
) ENGINE=InnoDB;

测试SQL语句:

select count(*) from sbtest1;
select count(1) from sbtest1;
select count(id) from sbtest1;
select count(k) from sbtest1;
select count© from sbtest1;
select count(pad) from sbtest1;

针对count(*)、count(1)和count(id),加了强制走主键的测试,如下:
select count(*) from sbtest1 force index(primary);
select count(1) from sbtest1 force index(primary);
select count(id) from sbtest1 force index(primary);

另外对不同的测试SQL,收集了profile,发现主要耗时都在Sending data这个阶段,记录Sending data值。

汇总测试结果:

类型耗时(s)索引Sending data耗时(s)
count(*)0.47k_10.463624
count(1)0.46k_10.463242
count(id)0.52k_10.521618
count(*)强制走主键0.54primay key0.538737
count(1)强制走主键0.55primary key0.545007
count(id)强制走主键0.60primary key0.598975
count(k)0.53k_10.529366
count©0.81NULL0.813918
count(pad)0.76NULL0.762040

结果分析:

  1. 从以上测试结果来看,count(*)和count(1)性能基本一样,默认走二级索引(k_1),性能最好,这也验证了count(*)和count(1)在InnoDB内部处理方式一样。
  2. count(id) 虽然也走二级索引(k_1),但是性能明显低于count(*)和count(1),可能MySQL内部在处理count(*)和count(1)时做了额外的优化。
  3. 强制走主键索引时,性能反而没有走更小的二级索引好,InnoDB存储引擎是索引组织表,行数据在主键索引的叶子节点上,走主键索引扫描时,处理的数据量比二级索引更多,所以性能不及二级索引。
  4. count©和count(pad)没有走索引,性能最差,但是明显count(pad)比count©好,因为pad字段类型为char(60),小于字段c的char(120),尽管两者性能垫底,但是字段小的性能相对更好些。
2. count(*)延伸
  • 在5.7.18版本之前,InnoDB处理select count(*) 是通过扫描聚簇索引,来获取总记录数。
  • 从5.7.18版本开始,InnoDB扫描一个最小的可用的二级索引来获取总记录数,或者由SQL hint来告诉优化器使用哪个索引。如果二级索引不存在,InnoDB将会扫描聚簇索引。

执行select count(*)在大部分场景下性能都不会太好,尤其是表记录数特别大的情况下,索引数据不在buffer pool里面,需要频繁的读磁盘,性能将更差。

3. count(*)优化思路
  1. 一种优化方法,是使用一个统计表来存储表的记录总数,在执行DML操作时,同时更新该统计表。这种方法适用于更新较少,读较多的场景,而对于高并发写操作,性能有很大影响,因为需要并发更新热点记录。
  2. 如果业务对count数量的精度没有太大要求,可使用show table status中的行数作为近似值。

这篇关于MySQL count(*),count(1),count(field)区别、性能差异及优化建议的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122564

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

SQL中的外键约束

外键约束用于表示两张表中的指标连接关系。外键约束的作用主要有以下三点: 1.确保子表中的某个字段(外键)只能引用父表中的有效记录2.主表中的列被删除时,子表中的关联列也会被删除3.主表中的列更新时,子表中的关联元素也会被更新 子表中的元素指向主表 以下是一个外键约束的实例展示

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

如何去写一手好SQL

MySQL性能 最大数据量 抛开数据量和并发数,谈性能都是耍流氓。MySQL没有限制单表最大记录数,它取决于操作系统对文件大小的限制。 《阿里巴巴Java开发手册》提出单表行数超过500万行或者单表容量超过2GB,才推荐分库分表。性能由综合因素决定,抛开业务复杂度,影响程度依次是硬件配置、MySQL配置、数据表设计、索引优化。500万这个值仅供参考,并非铁律。 博主曾经操作过超过4亿行数据

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

MySQL数据库宕机,启动不起来,教你一招搞定!

作者介绍:老苏,10余年DBA工作运维经验,擅长Oracle、MySQL、PG、Mongodb数据库运维(如安装迁移,性能优化、故障应急处理等)公众号:老苏畅谈运维欢迎关注本人公众号,更多精彩与您分享。 MySQL数据库宕机,数据页损坏问题,启动不起来,该如何排查和解决,本文将为你说明具体的排查过程。 查看MySQL error日志 查看 MySQL error日志,排查哪个表(表空间

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份