Elasticsearch 开放推理 API 增加了对 Anthropic 的 Claude 的支持

2024-08-30 21:52

本文主要是介绍Elasticsearch 开放推理 API 增加了对 Anthropic 的 Claude 的支持,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:来自 Elastic Jonathan Buttner

我们很高兴地宣布 Elasticsearch Open Inference API 的最新功能:集成 Anthropic 的 Claude。这项功能使 Elastic 用户能够直接连接到 Anthropic 平台,并使用 Claude 3.5 Sonnet 等大型语言模型来构建 GenAI 应用程序,并实现问答等用例。以前,客户可以从 Amazon Bedrock 等提供商处访问此功能,但现在可以使用他们的 Anthropic 帐户来实现这些目的。

使用 Anthropic 的消息来回答问题

在此博客中,我们将使用 Claude Messages API 在提取(ingestion)过程中回答问题,以便在搜索之前准备好答案。在开始与 Elasticsearch 交互之前,请确保你拥有 Anthropic API 密钥,方法是先创建一个评估帐户并生成一个密钥。我们将使用 Kibana 的控制台在 Elasticsearch 中执行这些后续步骤,而无需设置 IDE。

首先,我们配置一个推理端点,它将与 Anthropic 的消息 API 交互:

PUT _inference/completion/anthropic_completion
{"service": "anthropic","service_settings": {"api_key": "<api key>","model_id": "claude-3-5-sonnet-20240620"},"task_settings": {"max_tokens": 1024}
}

成功创建推理端点后,我们将收到类似以下的响应,状态代码为 200 OK:

{"model_id": "anthropic_completion","task_type": "completion","service": "anthropic","service_settings": {"model_id": "claude-3-5-sonnet-20240620","rate_limit": {"requests_per_minute": 50}},"task_settings": {"max_tokens": 1024}
}

现在,我们可以调用已配置的端点来对任何文本输入执行 completion。让我们向模型询问 GenAI 的简短描述:

POST _inference/completion/anthropic_completion
{"input": "What is a short description of GenAI?"
}

我们应该收到状态代码为 200 OK 的响应,其中包含 GenAI 的简短描述:

{"completion": [{"result": "GenAI, short for Generative Artificial Intelligence, refers to AI systems that can create new content, such as text, images, audio, or video, based on patterns learned from existing data. These systems use advanced machine learning techniques, often involving deep neural networks, to generate human-like outputs in response to prompts or inputs. GenAI has diverse applications across industries, including content creation, design, coding, and problem-solving."}]
}

现在,我们可以设置一个问题目录,其中包含我们希望在采集期间得到解答的问题。我们将使用 Elasticsearch Bulk API 来索引有关 Elastic 产品的这些问题:

POST _bulk
{ "index" : { "_index" : "questions" } }
{"question": "What is Elasticsearch?"}
{ "index" : { "_index" : "questions" } }
{"question": "What is Kibana?"}
{ "index" : { "_index" : "questions" } }
{"question": "What is Logstash?"}

索引成功后应返回类似以下的响应:

{"errors": false,"took": 1552829728,"items": [{"index": {"_index": "questions","_id": "ipR_qJABkw3SJM5Tm3IC","_version": 1,"result": "created","_shards": {"total": 2,"successful": 1,"failed": 0},"_seq_no": 0,"_primary_term": 1,"status": 201}},{"index": {"_index": "questions","_id": "i5R_qJABkw3SJM5Tm3IC","_version": 1,"result": "created","_shards": {"total": 2,"successful": 1,"failed": 0},"_seq_no": 1,"_primary_term": 1,"status": 201}},{"index": {"_index": "questions","_id": "jJR_qJABkw3SJM5Tm3IC","_version": 1,"result": "created","_shards": {"total": 2,"successful": 1,"failed": 0},"_seq_no": 2,"_primary_term": 1,"status": 201}}]
}

我们现在将使用 script、inference 和 remove 处理器来创建我们的问答 ingest pipeline :

PUT _ingest/pipeline/question_answering_pipeline
{"processors": [{"script": {"source": "ctx.prompt = 'Please answer the following question: ' + ctx.question"}},{"inference": {"model_id": "anthropic_completion","input_output": {"input_field": "prompt","output_field": "answer"}}},{"remove": {"field": "prompt"}}]
}

管道在名为 prompt 的临时字段中为 question 字段添加前缀文本:“Please answer the following question:  ”。临时 prompt 字段的内容通过 inference API 发送到 Anthropic 服务。使用摄取管道提供了广泛的灵活性,因为你可以设置预提示以满足你的需求。这种方法也可用于汇总文档。

接下来,我们将通过调用 reindex API 将包含问题的文档通过问答管道发送。

POST _reindex
{"source": {"index": "questions","size": 50},"dest": {"index": "answers","pipeline": "question_answering_pipeline"}
}

我们应该收到类似以下的回应:

{"took": 9571,"timed_out": false,"total": 3,"updated": 0,"created": 3,"deleted": 0,"batches": 1,"version_conflicts": 0,"noops": 0,"retries": {"bulk": 0,"search": 0},"throttled_millis": 0,"requests_per_second": -1,"throttled_until_millis": 0,"failures": []
}

在生产设置中,你可能会使用另一种提取机制以自动方式提取文档。查看我们的 “将数据添加到 Elasticsearch” 指南,了解有关 Elastic 提供的将数据提取到 Elasticsearch 的各种选项的更多信息。我们还致力于展示提取机制并提供使用第三方工具将数据引入 Elasticsearch 的指导。例如,查看使用 Meltano 将数据从 Snowflake 提取到 Elasticsearch:开发人员的旅程,了解如何使用 Meltano 提取数据。

我们现在可以使用 Search API 搜索我们预先生成的答案:

POST answers/_search
{"query": {"match_all": {}}
}

响应将包含预先生成的答案:

{"took": 11,"timed_out": false,"_shards": { ... },"hits": {"total": { ... },"max_score": 1.0,"hits": [{"_index": "answers","_id": "4RO6YY8Bv2OsAP2iNusn","_score": 1.0,"_ignored": ["answer.keyword"],"_source": {"model_id": "azure_openai_completion","question": "What is Elasticsearch?","answer": "Elasticsearch is an open-source, RESTful, distributed search and analytics engine built on Apache Lucene. It can handle a wide variety of data types, including textual, numerical, geospatial, structured, and unstructured data. Elasticsearch is scalable and designed to operate in real-time, making it an ideal choice for use cases such as application search, log and event data analysis, and anomaly detection."}},{ ... },{ ... }]}
}

预先生成常见问题的答案对于降低运营成本特别有效。通过最大限度地减少对即时响应生成的需求,你可以显著减少所需的计算资源量。此外,这种方法可确保每个用户都收到相同的精确信息。一致性至关重要,尤其是在需要高可靠性和准确性的领域,例如医疗、法律或技术支持。

准备好自己尝试一下了吗?开始免费试用。
Elasticsearch 集成了 LangChain、Cohere 等工具。加入我们的高级语义搜索网络研讨会,构建你的下一个 GenAI 应用程序!

原文:Elasticsearch open inference API adds support for Anthropic’s Claude — Search Labs

这篇关于Elasticsearch 开放推理 API 增加了对 Anthropic 的 Claude 的支持的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122036

相关文章

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)

《k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)》本文记录在K8s上运行的MySQL/MariaDB备份方案,通过工具容器执行mysqldump,结合定时任务实... 目录前言一、获取需要备份的数据库的信息二、备份步骤1.准备工作(X86)1.准备工作(arm)2.手

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

华为鸿蒙HarmonyOS 5.1官宣7月开启升级! 首批支持名单公布

《华为鸿蒙HarmonyOS5.1官宣7月开启升级!首批支持名单公布》在刚刚结束的华为Pura80系列及全场景新品发布会上,除了众多新品的发布,还有一个消息也点燃了所有鸿蒙用户的期待,那就是Ha... 在今日的华为 Pura 80 系列及全场景新品发布会上,华为宣布鸿蒙 HarmonyOS 5.1 将于 7

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现

无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案

《无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案》:本文主要介绍了无法启动此程序,详细内容请阅读本文,希望能对你有所帮助... 在计算机使用过程中,我们经常会遇到一些错误提示,其中之一就是"api-ms-win-core-path-l1-1-0.dll丢失

CentOS7增加Swap空间的两种方法

《CentOS7增加Swap空间的两种方法》当服务器物理内存不足时,增加Swap空间可以作为虚拟内存使用,帮助系统处理内存压力,本文给大家介绍了CentOS7增加Swap空间的两种方法:创建新的Swa... 目录在Centos 7上增加Swap空间的方法方法一:创建新的Swap文件(推荐)方法二:调整Sww

python通过curl实现访问deepseek的API

《python通过curl实现访问deepseek的API》这篇文章主要为大家详细介绍了python如何通过curl实现访问deepseek的API,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编... API申请和充值下面是deepeek的API网站https://platform.deepsee

Java对接Dify API接口的完整流程

《Java对接DifyAPI接口的完整流程》Dify是一款AI应用开发平台,提供多种自然语言处理能力,通过调用Dify开放API,开发者可以快速集成智能对话、文本生成等功能到自己的Java应用中,本... 目录Java对接Dify API接口完整指南一、Dify API简介二、准备工作三、基础对接实现1.

一文详解如何在Vue3中封装API请求

《一文详解如何在Vue3中封装API请求》在现代前端开发中,API请求是不可避免的一部分,尤其是与后端交互时,下面我们来看看如何在Vue3项目中封装API请求,让你在实现功能时更加高效吧... 目录为什么要封装API请求1. vue 3项目结构2. 安装axIOS3. 创建API封装模块4. 封装API请求