Redis的内存淘汰策略-allkeys-random

2024-08-30 12:28

本文主要是介绍Redis的内存淘汰策略-allkeys-random,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

`allkeys-random` 策略简介

在 `allkeys-random` 策略下,当 Redis 的内存使用达到配置的上限(`maxmemory`)时,它会随机选择一个键进行删除,直到释放足够的内存。这个策略的核心特征是其简单性和低计算开销,因为它不需要跟踪每个键的使用频率或最近访问时间。

这种策略适用于以下场景:
- 不关心具体删除哪个键的应用场景。
- 数据访问模式不固定,所有键的使用频率差异不大。
- 需要简单且快速的内存管理方式。

思路与实现

1. **配置 Redis 的内存淘汰策略为 `allkeys-random`**:
   - 在 Redis 配置文件中设置 `maxmemory` 和 `maxmemory-policy` 参数。
   
2. **实现 Java 程序**:
   - 使用 Jedis(Redis 的 Java 客户端库)连接 Redis。
   - 插入大量数据,模拟达到内存上限。
   - 演示当内存达到上限时,Redis 如何随机删除键。

3. **展示 `allkeys-random` 淘汰机制**:
   - 插入数据直到触发内存淘汰策略。
   - 观察哪些键被随机淘汰。

代码实现

1. 添加依赖

确保您的项目包含 Jedis 依赖。对于 Maven 项目,在 `pom.xml` 中添加以下依赖项:


<dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId><version>4.3.1</version>
</dependency>

 2. 配置 Redis

在 Redis 配置文件 `redis.conf` 中,确保设置内存上限和 `allkeys-random` 策略:


maxmemory 100mb  # 设置最大内存为 100MB
maxmemory-policy allkeys-random  # 设置淘汰策略为 allkeys-random

3. Java 代码示例

下面是 Java 代码,使用 Jedis 连接 Redis 并演示 `allkeys-random` 策略的效果。


import redis.clients.jedis.Jedis;
import redis.clients.jedis.exceptions.JedisDataException;public class RedisAllKeysRandomExample {// Redis 连接配置private static final String REDIS_HOST = "localhost";private static final int REDIS_PORT = 6379;// 数据生成配置private static final int INITIAL_LOAD = 150000; // 初始插入数据数量private static final int TEST_LOAD = 100000;    // 测试插入数据数量private static final String VALUE_PREFIX = "value_"; // 数据前缀public static void main(String[] args) {// 初始化 Redis 连接Jedis jedis = new Jedis(REDIS_HOST, REDIS_PORT);try {// 检查当前的内存淘汰策略String maxMemoryPolicy = jedis.configGet("maxmemory-policy").get(1);System.out.println("当前 Redis 的内存淘汰策略: " + maxMemoryPolicy);if (!"allkeys-random".equals(maxMemoryPolicy)) {System.out.println("警告: 当前内存淘汰策略不是 allkeys-random,可能需要修改 redis.conf 文件。");return;}System.out.println("开始插入初始数据...");// 1. 初始加载数据,模拟大量数据插入for (int i = 0; i < INITIAL_LOAD; i++) {String key = "key_" + i;String value = VALUE_PREFIX + i;jedis.set(key, value);if (i % 10000 == 0) {System.out.println("已插入初始数据 " + i + " 条");}}System.out.println("初始数据插入完成。");// 2. 插入更多数据,超过内存上限,触发随机淘汰机制System.out.println("插入更多数据以触发随机淘汰...");for (int i = INITIAL_LOAD; i < INITIAL_LOAD + TEST_LOAD; i++) {String key = "key_" + i;String value = VALUE_PREFIX + i;try {jedis.set(key, value);} catch (JedisDataException e) {if (e.getMessage().contains("OOM")) {System.out.println("内存不足!无法插入更多数据。写操作被拒绝: " + key);break;} else {throw e; // 其他异常抛出}}if (i % 10000 == 0) {System.out.println("已插入测试数据 " + i + " 条");}}// 3. 验证哪些数据被淘汰System.out.println("验证哪些数据被淘汰...");int missCount = 0;for (int i = 0; i < INITIAL_LOAD; i++) {String key = "key_" + i;String value = jedis.get(key);if (value == null) {missCount++;}}System.out.println("初始数据中被随机淘汰的键数量: " + missCount);} finally {// 关闭 Redis 连接jedis.close();}}
}

代码解释

1. **初始化 Redis 连接**:
   - 使用 Jedis 连接到本地 Redis 实例。

2. **检查内存淘汰策略**:
   - 使用 `jedis.configGet("maxmemory-policy")` 获取当前内存淘汰策略,确保其为 `allkeys-random`。

3. **插入初始数据**:
   - 使用一个 `for` 循环向 Redis 插入 15 万条数据,模拟达到内存上限的场景。

4. **插入更多数据以触发随机淘汰机制**:
   - 继续插入额外的 10 万条数据,这将导致 Redis 达到内存上限并触发 `allkeys-random` 淘汰策略。Redis 会随机选择键进行删除。

5. **验证哪些数据被淘汰**:
   - 遍历初始插入的 15 万条数据,统计哪些键被 `allkeys-random` 策略淘汰。结果表明,数据被随机淘汰,具体哪个键被删除不可预测。

 运行代码并观察结果

在运行上述 Java 代码后,Redis 将插入大量数据。一旦内存达到配置的上限,Redis 将根据 `allkeys-random` 策略随机删除键。这时,您可以观察到随机淘汰的效果,即被删除的数据无规律可循。

 `allkeys-random` 策略的优势和限制

优势

1. **实现简单**:`allkeys-random` 策略实现简单,计算开销低,因为不需要跟踪每个键的使用频率或最近访问时间。
2. **适合特定场景**:对于那些不关心具体删除哪个键的应用场景,这种策略非常合适,尤其是当数据使用频率较为均匀时。

限制

1. **不适合缓存热点数据**:`allkeys-random` 不考虑数据的使用频率,因此无法保证高频使用的数据留在内存中。
2. **数据不确定性**:由于随机删除,某些重要数据可能会被误删,导致缓存命中率降低。

 配置和调优

为了有效利用 `allkeys-random` 策略,您可以在 Redis 配置文件中进行适当设置:

- **设置合适的 `maxmemory`**:根据实际应用的内存需求和服务器的物理内存,合理设置 `maxmemory` 参数。
- **监控内存使用情况**:通过 Redis 的 `INFO` 命令或其他监控工具,定期监控 Redis 的内存使用情况,确保内存管理策略的有效性。

总结

     Redis的内存淘汰策略之一是allkeys-random,它是一种随机选择淘汰的策略。当Redis的内存使用达到上限时,需要淘汰一些数据来释放内存。

allkeys-random策略会随机选择一个数据进行淘汰,不考虑数据的优先级或者访问频率。这意味着被选择淘汰的数据可能是最活跃的数据,也可能是最不活跃的数据。

优点:

  • 实现简单,不需要对每个数据进行评估和排序。
  • 在某些场景下,随机选择淘汰可以避免数据的热点问题,从而提高整体的访问性能。

缺点:

  • 由于随机选择的特性,可能导致删除了重要的数据,影响业务逻辑。
  • 不考虑数据的优先级和访问频率,可能导致一些重要的数据被淘汰,从而影响系统的性能和稳定性。

 allkeys-random是Redis的一种内存淘汰策略,它随机选择一个数据进行淘汰,不考虑数据的优先级和访问频率。这种策略的优点是简单且能够避免热点问题,但缺点是可能删除重要数据并且不考虑数据的重要性。在某些场景下,这种策略可能会带来一些潜在的风险和问题,因此在选择使用时需要谨慎评估。

这篇关于Redis的内存淘汰策略-allkeys-random的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1120814

相关文章

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

两个月冲刺软考——访问位与修改位的题型(淘汰哪一页);内聚的类型;关于码制的知识点;地址映射的相关内容

1.访问位与修改位的题型(淘汰哪一页) 访问位:为1时表示在内存期间被访问过,为0时表示未被访问;修改位:为1时表示该页面自从被装入内存后被修改过,为0时表示未修改过。 置换页面时,最先置换访问位和修改位为00的,其次是01(没被访问但被修改过)的,之后是10(被访问了但没被修改过),最后是11。 2.内聚的类型 功能内聚:完成一个单一功能,各个部分协同工作,缺一不可。 顺序内聚:

JVM内存调优原则及几种JVM内存调优方法

JVM内存调优原则及几种JVM内存调优方法 1、堆大小设置。 2、回收器选择。   1、在对JVM内存调优的时候不能只看操作系统级别Java进程所占用的内存,这个数值不能准确的反应堆内存的真实占用情况,因为GC过后这个值是不会变化的,因此内存调优的时候要更多地使用JDK提供的内存查看工具,比如JConsole和Java VisualVM。   2、对JVM内存的系统级的调优主要的目的是减少

JVM 常见异常及内存诊断

栈内存溢出 栈内存大小设置:-Xss size 默认除了window以外的所有操作系统默认情况大小为 1MB,window 的默认大小依赖于虚拟机内存。 栈帧过多导致栈内存溢出 下述示例代码,由于递归深度没有限制且没有设置出口,每次方法的调用都会产生一个栈帧导致了创建的栈帧过多,而导致内存溢出(StackOverflowError)。 示例代码: 运行结果: 栈帧过大导致栈内存

Redis中使用布隆过滤器解决缓存穿透问题

一、缓存穿透(失效)问题 缓存穿透是指查询一个一定不存在的数据,由于缓存中没有命中,会去数据库中查询,而数据库中也没有该数据,并且每次查询都不会命中缓存,从而每次请求都直接打到了数据库上,这会给数据库带来巨大压力。 二、布隆过滤器原理 布隆过滤器(Bloom Filter)是一种空间效率很高的随机数据结构,它利用多个不同的哈希函数将一个元素映射到一个位数组中的多个位置,并将这些位置的值置

理解java虚拟机内存收集

学习《深入理解Java虚拟机》时个人的理解笔记 1、为什么要去了解垃圾收集和内存回收技术? 当需要排查各种内存溢出、内存泄漏问题时,当垃圾收集成为系统达到更高并发量的瓶颈时,我们就必须对这些“自动化”的技术实施必要的监控和调节。 2、“哲学三问”内存收集 what?when?how? 那些内存需要回收?什么时候回收?如何回收? 这是一个整体的问题,确定了什么状态的内存可以

NGINX轻松管理10万长连接 --- 基于2GB内存的CentOS 6.5 x86-64

转自:http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=190176&id=4234854 一 前言 当管理大量连接时,特别是只有少量活跃连接,NGINX有比较好的CPU和RAM利用率,如今是多终端保持在线的时代,更能让NGINX发挥这个优点。本文做一个简单测试,NGINX在一个普通PC虚拟机上维护100k的HTTP

Lua 脚本在 Redis 中执行时的原子性以及与redis的事务的区别

在 Redis 中,Lua 脚本具有原子性是因为 Redis 保证在执行脚本时,脚本中的所有操作都会被当作一个不可分割的整体。具体来说,Redis 使用单线程的执行模型来处理命令,因此当 Lua 脚本在 Redis 中执行时,不会有其他命令打断脚本的执行过程。脚本中的所有操作都将连续执行,直到脚本执行完成后,Redis 才会继续处理其他客户端的请求。 Lua 脚本在 Redis 中原子性的原因