【自由能系列(初级)】自由能原理——神经科学的“能量守恒”方程

2024-08-30 04:12

本文主要是介绍【自由能系列(初级)】自由能原理——神经科学的“能量守恒”方程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【通俗理解】自由能原理——神经科学的“能量守恒”方程

关键词提炼

#自由能原理 #KL散度 #生成模型 #识别密度 #观测数据 #神经科学

第一节:自由能原理的类比与核心概念

1.1 自由能原理的类比

自由能原理在神经科学中的应用,可以类比为一个“大脑的能量守恒”方程。就像物理学中的能量守恒定律一样,大脑在处理信息时,也遵循着一种“自由能守恒”的原则。
这个原理通过衡量大脑对外部世界的识别(识别密度)与内部模型的生成(生成模型)之间的差异,并加上观测数据的影响,来计算大脑在处理信息时的“自由能”。

在这里插入图片描述

1.2 相似公式比对

  • 能量守恒定律 Δ E = Q − W \Delta E = Q - W ΔE=QW,描述了能量在系统中的守恒关系。
  • 自由能原理 F = D K L ( q ( x ) ∥ p ( x ∣ y ) ) + log ⁡ p ( y ) F = D_{KL}(q(x) \parallel p(x \mid y)) + \log p(y) F=DKL(q(x)p(xy))+logp(y),则描述了神经科学中信息处理的“自由能守恒”。

第二节:自由能原理的核心概念与应用

2.1 核心概念

核心概念定义比喻或解释
自由能F代表大脑在处理信息时的“能量”状态。类似于物理中的自由能,是系统状态的一种度量。
KL散度衡量识别密度q(x)与生成模型p(x∣y)之间的差异。类似于距离,表示两个分布之间的差异程度。
识别密度q(x)大脑对外部世界的识别或感知。类似于我们对外部世界的“观察”或“理解”。
生成模型p(x∣y)大脑内部的模型,用于生成对外部世界的预测或解释。类似于我们对外部世界的“假设”或“模型”。
观测数据y外部世界提供给大脑的信息。类似于我们眼睛看到的、耳朵听到的等外部信息。

2.2 优势与劣势

  • 量化分析:将大脑的信息处理过程量化,使得研究更加客观和准确。
  • 模型解释:提供了大脑如何处理外部信息的一种理论框架。

2.3 与神经科学的类比

自由能原理在神经科学中扮演着“能量守恒”的角色,它揭示了大脑在处理信息时遵循的一种基本原则,就像物理学中的能量守恒定律一样。

第三节:公式探索与推演运算

3.1 自由能原理的基本形式

自由能原理的基本形式为:

F = D K L ( q ( x ) ∥ p ( x ∣ y ) ) + log ⁡ p ( y ) F = D_{KL}(q(x) \parallel p(x \mid y)) + \log p(y) F=DKL(q(x)p(xy))+logp(y)

其中,F代表自由能, D K L D_{KL} DKL是KL散度,q(x)是识别密度,p(x∣y)是生成模型,y是观测数据。

3.2 具体实例与推演

假设识别密度q(x)是一个高斯分布,生成模型p(x∣y)也是一个高斯分布,且两者具有相同的均值但不同的方差,那么KL散度就可以通过计算两个高斯分布之间的差异来得到。同时,观测数据y的对数概率 log ⁡ p ( y ) \log p(y) logp(y)可以通过观测数据的分布来计算。将这两部分相加,就可以得到自由能F的值。

第四节:相似公式比对

  • 信息增益自由能原理中的KL散度

    • 共同点:都涉及到了信息的度量。
    • 不同点:信息增益通常用于决策树等算法中,衡量特征对分类的贡献;而KL散度则用于衡量两个分布之间的差异,是自由能原理的一部分。
  • 贝叶斯公式自由能原理

    • 相似点:都涉及到了先验概率和后验概率。
    • 差异:贝叶斯公式是概率论中的基本公式,用于计算后验概率;而自由能原理则是神经科学中的一个原理,用于描述大脑的信息处理过程。

第五节:核心代码与可视化

这段代码使用Python的NumPy和Matplotlib库来计算和可视化自由能原理。通过模拟识别密度和生成模型,计算KL散度和观测数据的对数概率,从而得到自由能的值,并进行可视化展示。

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns# Define the recognition density q(x) and the generative model p(x|y)
def q(x):return np.exp(-(x - 0)**2 / (2 * 1**2)) / (np.sqrt(2 * np.pi) * 1)def p(x, y):return np.exp(-(x - y)**2 / (2 * 0.5**2)) / (np.sqrt(2 * np.pi) * 0.5)# Define the KL divergence
def KL_divergence(q_dist, p_dist):return np.sum(q_dist * np.log(q_dist / p_dist))# Define the log probability of the observation data
def log_probability(y):return -np.log(np.sqrt(2 * np.pi)) - 0.5 * y**2# Calculate the free energy
def free_energy(y):x_values = np.linspace(-5, 5, 1000)q_dist = q(x_values)p_dist = p(x_values, y)kl_div = KL_divergence(q_dist, p_dist)log_prob = log_probability(y)return kl_div + log_prob# Visualize the free energy for different observation data
y_values = np.linspace(-3, 3, 10)
free_energies = [free_energy(y) for y in y_values]sns.set_theme(style="whitegrid")
plt.plot(y_values, free_energies, label='Free Energy F(y)')
plt.xlabel('Observation Data y')
plt.ylabel('Free Energy F')
plt.title('Free Energy for Different Observation Data')
plt.legend()
plt.show()# Printing more detailed output information
print("Free energy plot has been generated and displayed. \nThe plot illustrates the free energy F(y) for different values of observation data y, \ncalculated using the Free Energy Principle.")

这段代码首先定义了识别密度q(x)和生成模型p(x∣y),然后计算了KL散度和观测数据的对数概率,最后得到了自由能的值,并进行了可视化展示。通过可视化,我们可以直观地看到自由能随观测数据y的变化情况。

代码输出内容
在这里插入图片描述

这篇关于【自由能系列(初级)】自由能原理——神经科学的“能量守恒”方程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1119764

相关文章

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

JDK多版本共存并自由切换的操作指南(本文为JDK8和JDK17)

《JDK多版本共存并自由切换的操作指南(本文为JDK8和JDK17)》本文介绍了如何在Windows系统上配置多版本JDK(以JDK8和JDK17为例),并通过图文结合的方式给大家讲解了详细步骤,具有... 目录第一步 下载安装JDK第二步 配置环境变量第三步 切换JDK版本并验证可能遇到的问题前提:公司常

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

kotlin中的模块化结构组件及工作原理

《kotlin中的模块化结构组件及工作原理》本文介绍了Kotlin中模块化结构组件,包括ViewModel、LiveData、Room和Navigation的工作原理和基础使用,本文通过实例代码给大家... 目录ViewModel 工作原理LiveData 工作原理Room 工作原理Navigation 工