【自由能系列(中级)】自由能与变分自由能——从状态到配置的效益最大化

2024-08-30 00:12

本文主要是介绍【自由能系列(中级)】自由能与变分自由能——从状态到配置的效益最大化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自由能与变分自由能——从状态到配置的效益最大化

关键词提炼

#自由能 #变分自由能 #状态函数 #配置函数 #效益最大化 #物理系统 #优化问题

第一节:自由能与变分自由能的类比与核心概念

1.1 自由能与变分自由能的类比

自由能和变分自由能可以被视为物理系统的“效益计算器”。
自由能衡量了系统在一个给定状态下的“效益”,而变分自由能则进一步考虑了系统配置的变化对效益的影响。
就像企业家在经营中不仅要考虑当前的盈利状况,还要考虑如何通过调整经营策略来优化长期效益
在这里插入图片描述

1.2 相似公式比对

  • 自由能公式 F = U − T S F = U - TS F=UTS,其中U是内能,T是温度,S是熵。它描述了一个系统在给定状态下的效益。
  • 变分自由能公式:在更复杂的系统中,变分自由能可能涉及对多个配置参数的优化,形如 δ F = δ U − T δ S − ∑ i μ i δ N i \delta F = \delta U - T\delta S - \sum_i \mu_i \delta N_i δF=δUTδSiμiδNi,其中 δ \delta δ表示变分, μ i \mu_i μi是化学势, N i N_i Ni是粒子数。这描述了系统配置变化时的效益变化。

第二节:自由能与变分自由能的核心概念与应用

2.1 核心概念

核心概念定义比喻或解释
自由能F系统在给定状态下的效益度量。像是企业的当前盈利状况,反映了系统在当前状态下的“效益”。
变分自由能 δ F \delta F δF系统配置变化时效益的变化量。类似于企业通过调整经营策略来探索潜在的盈利增长。
内能U系统内部的能量总和。像是企业的固定资产和流动资金的总和。
熵S系统无序度的度量,反映了系统内部状态的多样性。类似于企业内部管理的混乱程度或市场的不确定性。
温度T系统热状态的度量,影响系统效益与熵之间的权衡。类似于市场环境的变化,影响企业的盈利与风险之间的权衡。

2.2 优势与劣势

  • 量化分析:自由能和变分自由能提供了量化系统效益的方法,使得分析和优化更加客观和准确。
  • 广泛应用:这些概念在物理学、化学、生物学等领域都有广泛应用,为各种系统的优化提供了理论基础。
  • 劣势:计算复杂,特别是在涉及多变量和复杂配置的系统中,变分自由能的计算可能变得非常复杂。

2.3 与系统优化的类比

自由能和变分自由能在系统优化中扮演着“导航仪”的角色,它们指导我们如何在众多可能的配置中找到效益最大化的状态,就像导航仪指导我们找到从起点到终点的最佳路径一样。

第三节:公式探索与推演运算

3.1 自由能的基本形式

自由能的基本形式为:

F = U − T S F = U - TS F=UTS

其中,F是自由能,U是内能,T是温度,S是熵。这个公式描述了系统在给定状态下的效益。

3.2 变分自由能的推导

当系统配置发生变化时,我们需要考虑这种变化对自由能的影响。变分自由能可以通过对自由能公式进行变分运算得到:

δ F = δ U − T δ S − ∑ i μ i δ N i \delta F = \delta U - T\delta S - \sum_i \mu_i \delta N_i δF=δUTδSiμiδNi

其中, δ \delta δ表示变分, μ i \mu_i μi是化学势,与粒子数 N i N_i Ni的变化相关。这个公式描述了系统配置变化时效益的变化量。

3.3 具体实例与推演

假设我们有一个简单的物理系统,其内能U是温度T和体积V的函数,即U(T, V)。系统的熵S也是T和V的函数,即S(T, V)。那么,自由能F可以表示为:

F ( T , V ) = U ( T , V ) − T S ( T , V ) F(T, V) = U(T, V) - TS(T, V) F(T,V)=U(T,V)TS(T,V)

如果系统体积发生变化,我们可以计算变分自由能来评估这种变化对系统效益的影响:

δ F = ∂ F ∂ V δ V = ( ∂ U ∂ V − T ∂ S ∂ V ) δ V \delta F = \frac{\partial F}{\partial V} \delta V = \left( \frac{\partial U}{\partial V} - T\frac{\partial S}{\partial V} \right) \delta V δF=VFδV=(VUTVS)δV

通过求解这个方程,我们可以找到使系统效益最大化的最佳体积配置。

第四节:相似公式比对

  • 自由能与吉布斯自由能

    • 共同点:都是衡量系统效益的物理量。
    • 不同点:自由能更侧重于系统状态,而吉布斯自由能则进一步考虑了系统的化学势和粒子数变化。
  • 变分自由能与拉格朗日量

    • 相似点:都涉及对系统配置的优化。
    • 差异:变分自由能主要用于物理和化学系统,而拉格朗日量则更多用于力学系统的优化问题。

第五节:核心代码与可视化

这段代码使用Python的numpymatplotlib库来计算和可视化一个简单的物理系统的自由能和变分自由能。

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns# 定义内能和熵的函数
def U(T, V):return T * V**2  # 假设内能与温度和体积的平方成正比def S(T, V):return T * V     # 假设熵与温度和体积成正比# 计算自由能
def F(T, V):return U(T, V) - T * S(T, V)# 计算变分自由能
def delta_F(T, V, delta_V):dU_dV = 2 * T * V  # 内能对体积的偏导dS_dV = T          # 熵对体积的偏导return (dU_dV - T * dS_dV) * delta_V# 设置温度和体积范围
T = 2.0
V_range = np.linspace(0.1, 2.0, 100)# 计算自由能和变分自由能
F_values = [F(T, V) for V in V_range]
delta_F_values = [delta_F(T, V, 0.1) for V in V_range]# 可视化结果
sns.set_theme(style="whitegrid")
plt.plot(V_range, F_values, label='Free Energy F(V)')
plt.plot(V_range, delta_F_values, label='Variational Free Energy δF(V)')
plt.xlabel('Volume V')
plt.ylabel('Energy')
plt.title('Free Energy and Variational Free Energy')
plt.legend()# 添加重点区域的标注
plt.annotate('Minimum Free Energy', xy=(V_range[np.argmin(F_values)], np.min(F_values)), xytext=(0.6, 0.8), textcoords='axes fraction',bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5),arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0'))plt.show()# 打印更详细的输出信息
print("Free energy and variational free energy plots have been generated and displayed.\nThe plots illustrate the variation of free energy F(V) and variational free energy δF(V) with respect to volume V.")

这段代码首先定义了内能和熵的函数,然后计算了自由能和变分自由能,并使用matplotlib库进行了可视化。通过可视化,我们可以直观地看到自由能和变分自由能随系统体积的变化情况,从而找到使系统效益最大化的最佳配置。

代码输出内容
在这里插入图片描述

这篇关于【自由能系列(中级)】自由能与变分自由能——从状态到配置的效益最大化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1119247

相关文章

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

关于Maven中pom.xml文件配置详解

《关于Maven中pom.xml文件配置详解》pom.xml是Maven项目的核心配置文件,它描述了项目的结构、依赖关系、构建配置等信息,通过合理配置pom.xml,可以提高项目的可维护性和构建效率... 目录1. POM文件的基本结构1.1 项目基本信息2. 项目属性2.1 引用属性3. 项目依赖4. 构

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

gradle安装和环境配置全过程

《gradle安装和环境配置全过程》本文介绍了如何安装和配置Gradle环境,包括下载Gradle、配置环境变量、测试Gradle以及在IntelliJIDEA中配置Gradle... 目录gradle安装和环境配置1 下载GRADLE2 环境变量配置3 测试gradle4 设置gradle初始化文件5 i

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

C#读取本地网络配置信息全攻略分享

《C#读取本地网络配置信息全攻略分享》在当今数字化时代,网络已深度融入我们生活与工作的方方面面,对于软件开发而言,掌握本地计算机的网络配置信息显得尤为关键,而在C#编程的世界里,我们又该如何巧妙地读取... 目录一、引言二、C# 读取本地网络配置信息的基础准备2.1 引入关键命名空间2.2 理解核心类与方法

最新版IDEA配置 Tomcat的详细过程

《最新版IDEA配置Tomcat的详细过程》本文介绍如何在IDEA中配置Tomcat服务器,并创建Web项目,首先检查Tomcat是否安装完成,然后在IDEA中创建Web项目并添加Web结构,接着,... 目录配置tomcat第一步,先给项目添加Web结构查看端口号配置tomcat    先检查自己的to