【自由能系列(中级)】自由能与变分自由能——从状态到配置的效益最大化

2024-08-30 00:12

本文主要是介绍【自由能系列(中级)】自由能与变分自由能——从状态到配置的效益最大化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自由能与变分自由能——从状态到配置的效益最大化

关键词提炼

#自由能 #变分自由能 #状态函数 #配置函数 #效益最大化 #物理系统 #优化问题

第一节:自由能与变分自由能的类比与核心概念

1.1 自由能与变分自由能的类比

自由能和变分自由能可以被视为物理系统的“效益计算器”。
自由能衡量了系统在一个给定状态下的“效益”,而变分自由能则进一步考虑了系统配置的变化对效益的影响。
就像企业家在经营中不仅要考虑当前的盈利状况,还要考虑如何通过调整经营策略来优化长期效益
在这里插入图片描述

1.2 相似公式比对

  • 自由能公式 F = U − T S F = U - TS F=UTS,其中U是内能,T是温度,S是熵。它描述了一个系统在给定状态下的效益。
  • 变分自由能公式:在更复杂的系统中,变分自由能可能涉及对多个配置参数的优化,形如 δ F = δ U − T δ S − ∑ i μ i δ N i \delta F = \delta U - T\delta S - \sum_i \mu_i \delta N_i δF=δUTδSiμiδNi,其中 δ \delta δ表示变分, μ i \mu_i μi是化学势, N i N_i Ni是粒子数。这描述了系统配置变化时的效益变化。

第二节:自由能与变分自由能的核心概念与应用

2.1 核心概念

核心概念定义比喻或解释
自由能F系统在给定状态下的效益度量。像是企业的当前盈利状况,反映了系统在当前状态下的“效益”。
变分自由能 δ F \delta F δF系统配置变化时效益的变化量。类似于企业通过调整经营策略来探索潜在的盈利增长。
内能U系统内部的能量总和。像是企业的固定资产和流动资金的总和。
熵S系统无序度的度量,反映了系统内部状态的多样性。类似于企业内部管理的混乱程度或市场的不确定性。
温度T系统热状态的度量,影响系统效益与熵之间的权衡。类似于市场环境的变化,影响企业的盈利与风险之间的权衡。

2.2 优势与劣势

  • 量化分析:自由能和变分自由能提供了量化系统效益的方法,使得分析和优化更加客观和准确。
  • 广泛应用:这些概念在物理学、化学、生物学等领域都有广泛应用,为各种系统的优化提供了理论基础。
  • 劣势:计算复杂,特别是在涉及多变量和复杂配置的系统中,变分自由能的计算可能变得非常复杂。

2.3 与系统优化的类比

自由能和变分自由能在系统优化中扮演着“导航仪”的角色,它们指导我们如何在众多可能的配置中找到效益最大化的状态,就像导航仪指导我们找到从起点到终点的最佳路径一样。

第三节:公式探索与推演运算

3.1 自由能的基本形式

自由能的基本形式为:

F = U − T S F = U - TS F=UTS

其中,F是自由能,U是内能,T是温度,S是熵。这个公式描述了系统在给定状态下的效益。

3.2 变分自由能的推导

当系统配置发生变化时,我们需要考虑这种变化对自由能的影响。变分自由能可以通过对自由能公式进行变分运算得到:

δ F = δ U − T δ S − ∑ i μ i δ N i \delta F = \delta U - T\delta S - \sum_i \mu_i \delta N_i δF=δUTδSiμiδNi

其中, δ \delta δ表示变分, μ i \mu_i μi是化学势,与粒子数 N i N_i Ni的变化相关。这个公式描述了系统配置变化时效益的变化量。

3.3 具体实例与推演

假设我们有一个简单的物理系统,其内能U是温度T和体积V的函数,即U(T, V)。系统的熵S也是T和V的函数,即S(T, V)。那么,自由能F可以表示为:

F ( T , V ) = U ( T , V ) − T S ( T , V ) F(T, V) = U(T, V) - TS(T, V) F(T,V)=U(T,V)TS(T,V)

如果系统体积发生变化,我们可以计算变分自由能来评估这种变化对系统效益的影响:

δ F = ∂ F ∂ V δ V = ( ∂ U ∂ V − T ∂ S ∂ V ) δ V \delta F = \frac{\partial F}{\partial V} \delta V = \left( \frac{\partial U}{\partial V} - T\frac{\partial S}{\partial V} \right) \delta V δF=VFδV=(VUTVS)δV

通过求解这个方程,我们可以找到使系统效益最大化的最佳体积配置。

第四节:相似公式比对

  • 自由能与吉布斯自由能

    • 共同点:都是衡量系统效益的物理量。
    • 不同点:自由能更侧重于系统状态,而吉布斯自由能则进一步考虑了系统的化学势和粒子数变化。
  • 变分自由能与拉格朗日量

    • 相似点:都涉及对系统配置的优化。
    • 差异:变分自由能主要用于物理和化学系统,而拉格朗日量则更多用于力学系统的优化问题。

第五节:核心代码与可视化

这段代码使用Python的numpymatplotlib库来计算和可视化一个简单的物理系统的自由能和变分自由能。

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns# 定义内能和熵的函数
def U(T, V):return T * V**2  # 假设内能与温度和体积的平方成正比def S(T, V):return T * V     # 假设熵与温度和体积成正比# 计算自由能
def F(T, V):return U(T, V) - T * S(T, V)# 计算变分自由能
def delta_F(T, V, delta_V):dU_dV = 2 * T * V  # 内能对体积的偏导dS_dV = T          # 熵对体积的偏导return (dU_dV - T * dS_dV) * delta_V# 设置温度和体积范围
T = 2.0
V_range = np.linspace(0.1, 2.0, 100)# 计算自由能和变分自由能
F_values = [F(T, V) for V in V_range]
delta_F_values = [delta_F(T, V, 0.1) for V in V_range]# 可视化结果
sns.set_theme(style="whitegrid")
plt.plot(V_range, F_values, label='Free Energy F(V)')
plt.plot(V_range, delta_F_values, label='Variational Free Energy δF(V)')
plt.xlabel('Volume V')
plt.ylabel('Energy')
plt.title('Free Energy and Variational Free Energy')
plt.legend()# 添加重点区域的标注
plt.annotate('Minimum Free Energy', xy=(V_range[np.argmin(F_values)], np.min(F_values)), xytext=(0.6, 0.8), textcoords='axes fraction',bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5),arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0'))plt.show()# 打印更详细的输出信息
print("Free energy and variational free energy plots have been generated and displayed.\nThe plots illustrate the variation of free energy F(V) and variational free energy δF(V) with respect to volume V.")

这段代码首先定义了内能和熵的函数,然后计算了自由能和变分自由能,并使用matplotlib库进行了可视化。通过可视化,我们可以直观地看到自由能和变分自由能随系统体积的变化情况,从而找到使系统效益最大化的最佳配置。

代码输出内容
在这里插入图片描述

这篇关于【自由能系列(中级)】自由能与变分自由能——从状态到配置的效益最大化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1119247

相关文章

SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤

《SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤》本文主要介绍了SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤,文中通过示例代码介绍的非常详... 目录 目标 步骤 1:确保 ProxySQL 和 mysql 主从同步已正确配置ProxySQL 的

Spring Boot整合log4j2日志配置的详细教程

《SpringBoot整合log4j2日志配置的详细教程》:本文主要介绍SpringBoot项目中整合Log4j2日志框架的步骤和配置,包括常用日志框架的比较、配置参数介绍、Log4j2配置详解... 目录前言一、常用日志框架二、配置参数介绍1. 日志级别2. 输出形式3. 日志格式3.1 PatternL

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

配置springboot项目动静分离打包分离lib方式

《配置springboot项目动静分离打包分离lib方式》本文介绍了如何将SpringBoot工程中的静态资源和配置文件分离出来,以减少jar包大小,方便修改配置文件,通过在jar包同级目录创建co... 目录前言1、分离配置文件原理2、pom文件配置3、使用package命令打包4、总结前言默认情况下,

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

通过prometheus监控Tomcat运行状态的操作流程

《通过prometheus监控Tomcat运行状态的操作流程》文章介绍了如何安装和配置Tomcat,并使用Prometheus和TomcatExporter来监控Tomcat的运行状态,文章详细讲解了... 目录Tomcat安装配置以及prometheus监控Tomcat一. 安装并配置tomcat1、安装

Linux之进程状态&&进程优先级详解

《Linux之进程状态&&进程优先级详解》文章介绍了操作系统中进程的状态,包括运行状态、阻塞状态和挂起状态,并详细解释了Linux下进程的具体状态及其管理,此外,文章还讨论了进程的优先级、查看和修改进... 目录一、操作系统的进程状态1.1运行状态1.2阻塞状态1.3挂起二、linux下具体的状态三、进程的

VScode连接远程Linux服务器环境配置图文教程

《VScode连接远程Linux服务器环境配置图文教程》:本文主要介绍如何安装和配置VSCode,包括安装步骤、环境配置(如汉化包、远程SSH连接)、语言包安装(如C/C++插件)等,文中给出了详... 目录一、安装vscode二、环境配置1.中文汉化包2.安装remote-ssh,用于远程连接2.1安装2

Redis多种内存淘汰策略及配置技巧分享

《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个